ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-11
    Description: Cytosolic and organelle-based heat-shock protein (HSP) chaperones ensure proper folding and function of nascent and injured polypeptides to support cell growth. Under conditions of cellular stress, including oncogenic transformation, proteostasis components maintain homeostasis and prevent apoptosis. Although this cancer-relevant function has provided a rationale for therapeutically targeting proteostasis regulators (e.g.,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-10
    Description: The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-31
    Description: AB(5) toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB(5) toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Byres, Emma -- Paton, Adrienne W -- Paton, James C -- Lofling, Jonas C -- Smith, David F -- Wilce, Matthew C J -- Talbot, Ursula M -- Chong, Damien C -- Yu, Hai -- Huang, Shengshu -- Chen, Xi -- Varki, Nissi M -- Varki, Ajit -- Rossjohn, Jamie -- Beddoe, Travis -- R01 AI068715-01A1/AI/NIAID NIH HHS/ -- R01 AI068715-02/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Dec 4;456(7222):648-52. doi: 10.1038/nature07428. Epub 2008 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Crystallography Unit and ARC Centre of Excellence for Structural and Functional Microbial Genomics, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18971931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/chemistry/genetics/*metabolism/*toxicity ; Cell Death/drug effects ; Cell Line ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry/genetics/metabolism/*toxicity ; Humans ; Mice ; Microscopy, Fluorescence ; Models, Molecular ; Neuraminic Acids/administration & dosage/*metabolism/pharmacology ; Polysaccharides/*chemistry/*metabolism ; Protein Binding ; Protein Subunits ; Shiga-Toxigenic Escherichia coli/chemistry/pathogenicity ; Sialic Acids/chemistry/metabolism ; Species Specificity ; Substrate Specificity ; Subtilisins/*chemistry/genetics/metabolism/*toxicity ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-06
    Description: Protein folding by the endoplasmic reticulum (ER) is physiologically critical; its disruption causes ER stress and augments disease. ER stress activates the unfolded protein response (UPR) to restore homeostasis. If stress persists, the UPR induces apoptotic cell death, but the mechanisms remain elusive. Here, we report that unmitigated ER stress promoted apoptosis through cell-autonomous, UPR-controlled activation of death receptor 5 (DR5). ER stressors induced DR5 transcription via the UPR mediator CHOP; however, the UPR sensor IRE1alpha transiently catalyzed DR5 mRNA decay, which allowed time for adaptation. Persistent ER stress built up intracellular DR5 protein, driving ligand-independent DR5 activation and apoptosis engagement via caspase-8. Thus, DR5 integrates opposing UPR signals to couple ER stress and apoptotic cell fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Min -- Lawrence, David A -- Marsters, Scot -- Acosta-Alvear, Diego -- Kimmig, Philipp -- Mendez, Aaron S -- Paton, Adrienne W -- Paton, James C -- Walter, Peter -- Ashkenazi, Avi -- R01 GM032384/GM/NIGMS NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):98-101. doi: 10.1126/science.1254312.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. ; Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. ; Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia. ; Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. peter@walterlab.ucsf.edu aa@gene.com. ; Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. peter@walterlab.ucsf.edu aa@gene.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspases ; Endoplasmic Reticulum Stress/genetics/*physiology ; Endoribonucleases/metabolism ; HCT116 Cells ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Protein-Serine-Threonine Kinases/metabolism ; RNA Stability ; RNA, Messenger/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists/genetics/*physiology ; Transcription Factor CHOP ; *Unfolded Protein Response
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-22
    Print ISSN: 0108-7673
    Electronic ISSN: 2053-2733
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...