ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-27
    Description: In the central domain of fission yeast centromeres, the kinetochore is assembled on CENP-A(Cnp1) nucleosomes. Normally, small interfering RNAs generated from flanking outer repeat transcripts direct histone H3 lysine 9 methyltransferase Clr4 to homologous loci to form heterochromatin. Outer repeats, RNA interference (RNAi), and centromeric heterochromatin are required to establish CENP-A(Cnp1) chromatin. We demonstrated that tethering Clr4 via DNA-binding sites at euchromatic loci induces heterochromatin assembly, with or without active RNAi. This synthetic heterochromatin completely substitutes for outer repeats on plasmid-based minichromosomes, promoting de novo CENP-A(Cnp1) and kinetochore assembly, to allow their mitotic segregation, even with RNAi inactive. Thus, the role of outer repeats in centromere establishment is simply the provision of RNAi substrates to direct heterochromatin formation; H3K9 methylation-dependent heterochromatin is alone sufficient to form functional centromeres.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kagansky, Alexander -- Folco, Hernan Diego -- Almeida, Ricardo -- Pidoux, Alison L -- Boukaba, Abdelhalim -- Simmer, Femke -- Urano, Takeshi -- Hamilton, Georgina L -- Allshire, Robin C -- 065061/Wellcome Trust/United Kingdom -- 065061/Z/Wellcome Trust/United Kingdom -- G0301153/Medical Research Council/United Kingdom -- G0301153(69173)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1716-9. doi: 10.1126/science.1172026.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, 6.34 Swann Building, Edinburgh EH9 3JR, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19556509" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/metabolism ; Centromere/chemistry/*metabolism/ultrastructure ; *Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosome Segregation ; DNA-Binding Proteins/genetics/metabolism ; Heterochromatin/*metabolism ; Histones/metabolism ; Kinetochores/metabolism ; Methyltransferases/metabolism ; Mitosis ; *RNA Interference ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Schizosaccharomyces/genetics/*metabolism ; Schizosaccharomyces pombe Proteins/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-05
    Description: Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)-related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)-directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to promote CENP-A(Cnp1) and kinetochore assembly over the central domain. The H3K9 methyltransferase Clr4 (Suv39); the ribonuclease Dicer, which cleaves heterochromatic double-stranded RNA to small interfering RNA (siRNA); Chp1, a component of the RNAi effector complex (RNA-induced initiation of transcriptional gene silencing; RITS); and Swi6 (HP1) are required to establish CENP-A(Cnp1) chromatin on naive templates. Once assembled, CENP-A(Cnp1) chromatin is propagated by epigenetic means in the absence of heterochromatin. Thus, another, potentially conserved, role for centromeric RNAi-directed heterochromatin has been identified.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Folco, Hernan Diego -- Pidoux, Alison L -- Urano, Takeshi -- Allshire, Robin C -- 065061/Wellcome Trust/United Kingdom -- 065061/Z/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Jan 4;319(5859):94-7. doi: 10.1126/science.1150944.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, 6.34 Swann Building, Edinburgh EH9 3JR, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18174443" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/metabolism ; Centromere/*metabolism ; Chromatin/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Chromosome Segregation ; Chromosomes, Fungal/genetics/metabolism ; DNA, Fungal/genetics/metabolism ; Epigenesis, Genetic ; Heterochromatin/*metabolism ; Kinetochores/metabolism ; Methyltransferases/metabolism ; *RNA Interference ; RNA, Fungal/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Ribonuclease III/metabolism ; Schizosaccharomyces/genetics/*metabolism ; Schizosaccharomyces pombe Proteins/genetics/*metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-04
    Description: Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Audergon, Pauline N C B -- Catania, Sandra -- Kagansky, Alexander -- Tong, Pin -- Shukla, Manu -- Pidoux, Alison L -- Allshire, Robin C -- 092076/Wellcome Trust/United Kingdom -- 093852/Wellcome Trust/United Kingdom -- 095021/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):132-5. doi: 10.1126/science.1260638.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK. ; Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK. robin.allshire@ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838386" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; *Epigenesis, Genetic ; Heterochromatin/metabolism ; Histones/*metabolism ; Lysine/*metabolism ; Methylation ; Methyltransferases/*metabolism ; Mutation ; Nuclear Proteins/genetics ; Protein Processing, Post-Translational/*genetics ; Schizosaccharomyces/*enzymology/*genetics ; Schizosaccharomyces pombe Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...