ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-06
    Description: Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show (per)chlorate reduction also extends into the archaeal domain of life. The (per)chlorate reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity with bacterial enzymes; however, chlorite is not enzymatically split into chloride and oxygen. Evidence suggests that it is eliminated by an interplay of abiotic and biotic redox reactions involving sulfur compounds. Biological (per)chlorate reduction by ancient archaea at high temperature may have prevented accumulation of perchlorate in early terrestrial environments and consequently given rise to oxidizing conditions on Earth before the rise of oxygenic photosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liebensteiner, Martin G -- Pinkse, Martijn W H -- Schaap, Peter J -- Stams, Alfons J M -- Lomans, Bart P -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):85-7. doi: 10.1126/science.1233957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559251" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeoglobus fulgidus/*enzymology ; Metabolic Networks and Pathways ; Oxidation-Reduction ; Oxidoreductases/metabolism ; Perchlorates/*metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 161 (1994), S. 521-527 
    ISSN: 1432-072X
    Keywords: Key words: Pentose phosphate pathway – Embden-Meyerhof-Parnas pathway – Phosphoketolase pathway –Bacteroides xylanolyticus X5-1 – Xylose catabolism – Energy conservation – Cofactor regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The xylose metabolism of Bacteroides xylanolyticus X5-1 was studied by determining specific enzyme activities in cell free extracts, by following 13C-label distribution patterns in growing cultures and by mass balance calculations. Enzyme activities of the pentose phosphate pathway and the Embden-Meyerhof-Parnas pathway were sufficiently high to account for in vivo xylose fermentation to pyruvate via a combination of these two pathways. Pyruvate was mainly oxidized to acetyl-CoA, CO2 and a reduced cofactor (ferrodoxin). Part of the pyruvate was converted to acetyl-CoA and formate by means of a pyruvate-formate lyase. Acetyl-CoA was either converted to acetate by a combined action of phophotransacetylase and acetate kinase or reduced to ethanol by an acetaldehyde dehydrogenase and an ethanol dehydrogenase. The latter two enzymes displayed both a NADH- and a NADPH-linked activity. Cofactor regeneration proceeded via a reduction of intermediates of the metabolism (i.e. acetyl-CoA and acetaldehyde) and via proton reduction. According to the deduced pathway about 2.5 mol ATP are generated per mol of xylose degraded.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key words Fumarase ; Syntrophy ; Propionate ; oxidation ; Fumarate fermentation ; Anaerobic oxidation ; Iron-sulfur cluster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fumarase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 130-fold under anoxic conditions. The native enzyme had an apparent molecular mass of 114 kDa and was composed of two subunits of 60 kDa. The enzyme exhibited maximum activity at pH 8.5 and approximately 54° C. The K m values for fumarate and l-malate were 0.25 mM and 2.38 mM, respectively. Fumarase was inactivated by oxygen, but the activity could be restored by addition of Fe2+ and β-mercaptoethanol under anoxic conditions. EPR spectroscopy of the purified enzyme revealed the presence of a [3Fe-4S] cluster. Under reducing conditions, only a trace amount of a [4Fe-4S] cluster was detected. Addition of fumarate resulted in a significant increase of this [4Fe-4S] signal. The N-terminal amino acid sequence showed similarity to the sequences of fumarase A and B of Escherichia coli (56%) and fumarase A of Salmonella typhimurium (63%).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Propionic fermentation ; Fermentation of aspartate ; Nitrogen fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From estuarine mud a rod-shaped, motile, gram-negative, anaerobic bacterium was isolated (strain asp 66). Asp 66 fermented several substrates including glucose, fructose, malate, fumarate, citrate and aspartate. Fermentation products were acetate, propionate and presumably CO2. Hydrogen was never formed nor utilized. Succinate conversion to propionate was catalyzed by cell suspensions but did not support growth. Asp 66 did not require vitamins and grew well in mineral media with a fermentable substrate. The pH range for growth was from 6.5 to 8.5. Temperature optimum was 27 to 30°C. The strain was able to fix N2 as evidenced by its growth with N2 as sole nitrogen source and its ability to reduce acetylene to ethylene. Cell-free extracts of cultures grown under air without shaking contained cytochrome(s) with absorption peaks at 523 nm and at 553 nm. The G+C content of the DNA was 60.8+-1 mol%. The taxonomic position of strain asp 66 is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Acidaminobacter hydrogenoformans gen. nov. sp. nov. ; Glutamate degradation ; Amino acid fermentation ; Interspecies hydrogen transfer ; Syntrophic cultures ; Sulfate reduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From mud from the Ems-Dollard estuary (The Netherlands) an L-glutamate-fermenting bacterium was isolated. The isolated strain glu 65 is Gram-negative, rodshaped, obligately anaerobic, non-sporeforming and does not contain cytochromes. The G+C content of its DNA is 48 mol percent. Pure cultures of strain glu 65 grew slowly on glutamate (μmax 0.06 h-1) and formed acetate, CO2, formate and hydrogen, and minor amounts of propionate. A more rapid fermentation of glutamate was achieved in mixed cultures with sulfate-reducing bacteria (Desulfovibrio HL21 or Desulfobulbus propionicus) or methanogens (Methanospirillum hungatei or Methanobrevibacter arboriphilicus AZ). In mixed culture with Desulfovibrio HL21 a μmax of 0.10 h-1 was observed. With Desulfovibrio or the methanogens propionate was a major product (up to 0.47 mol per mol glutamate) in addition to acetate. Extracts of glutamate-grown cells possessed high activities of 3-methylaspartase, a key enzyme of the mesaconate pathway leading to acetate, and very high activities of NAD+-dependent glutamate dehydrogenase, an enzyme most likely involved in the pathway to propionate. The following other substrates allowed reasonable to good growth in pure culture: histidine, α-ketoglutarate, serine, cysteine, glycine, adenine, pyruvate, oxaloacetate and citrate. Utilization in mixed cultures was demonstrated for: glutamine, arginine, ornithine, threonine, lysine, alanine, valine, leucine and isoleucine (with Desulfovibrio HL21) and malate (with Methanospirillum). The shift in the fermentation of glutamate and the syntrophic utilization of the above substrates are explained in terms of interspecies hydrogen transfer. Strain glu 65 is described as the type strain of Acidaminobacter hydrogenoformans gen. nov. sp. nov.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract WhenBacteroides xylanolyticus X5-1 was grown on xylose in batch culture, acetate, ethanol, H2, CO2 and formate were the main fermentation products. CO inhibited H2 formation byB. xylanolyticus X5-1. As a result, the product formation shifted to more ethanol and formate and less acetate. Furthermore, less biomass was produced. H2 had almost no effect on the product formation from xylose. In batch cultures, dihydroxyacetone, acetone, acetoin and acetol could act as electron acceptors during xylose metabolism. The electron acceptors were reduced to their corresponding alcohols. The product formation from xylose byB. xylanolyticus X5-1 shifted to mainly acetate and CO2, and an increased biomass yield was obtained. H2, ethanol and formate were no longer produced. In continuous cultures not only 1,2-propanediol was formed from acetol, but also acetone. The NADP-dependent ethanol dehydrogenase that was present in xylosegrown continuous-culture cells, was repressed when the organism was grown in the presence of acetol. However, another alcohol dehydrogenase was induced for reduction of the external electron acceptor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Extracellular polymers were localized and quantitatively analysed in methanogenic granular sludge cultivated on either propionate or ethanol in laboratory upflow anaerobic sludge-blanket (UASB) reactors. Electron microscopical analysis of ultrathin sections of the two sludge types stained with ruthenium red revealed the presence of extracellular polymers with different densities and structures. For quantification, granular sludge from a large-scale UASB reactor at a liquid sugar plant was also included in this study. A three-step physical disintegration procedure was used to extract water-soluble extracellular material from the granules. After each disintegration step the extracts were analysed for polysaccharides and proteins. Cell damage and thus the contribution of intracellular proteins and polysaccharides was estimated simultaneously by the determination of free DNA and free ATP in the extracts. After two extraction steps, up to 3.5 mg polysaccharides/g organic material and 5.5 mg protein/g organic material were extracted, whereas no significant increase in DNA was detected. The role of extracellular polymers in granular stability is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of L-arabinose- and d-xylose-grown cells of the mesophilic anaerobic bacterium Bacteroides xylanolyticus X5-1 contained high activities [2 units (U)/mg] of an α-l-arabinofuranosidase (EC 3.2.1.55). The enzyme was also produced during growth on xylan, but not during growth on glucose or cellobiose. The enzyme was mainly extracellularly attached to the cell when the organism was grown on xylan and was not released into the medium. The enzyme was purified 41-fold to apparent homogeneity. The native enzyme had an apparent molecular mass of 364 kDa and was composed of six polypeptide subunits of 61 kDa. The enzyme displayed a pH optimum of 5.5–6.0, and a pH stability of 5.5–9.0. The temperature optimum was 50° C and the enzyme was stable up to 50° C. Thiol groups were essential for activity, but the enzyme activity was not dependent on divalent cations. The Michaelisconstant (Km) and maximal reaction velocity (Vmax) for p-nitrophenyl-α-l-arabinofuranoside were 0.5 mm and 155 U/mg protein, respectively. The enzyme was specific for the α-linked arabinoside in the furanoside configuration. The enzyme displayed activity with arabinose-containing xylo-oligosaccharides with a polymerization degree of 2–5, but not with the polymeric substrates oat-spelt xylan or arabinogalactan. The enzyme belongs to the Streptomyces purpurascens-type of α-l-arabinofuranosidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of L-arabinose- and d-xylose-grown cells of the mesophilic anaerobic bacterium Bacteroides xylanolyticus X5-1 contained high activities [2 units ((U)/mg] of an α-l-arabinofuranosidase (EC 3.2.1.55). The enzyme was also produced during growth on xylan, but not during growth on glucose or cellobiose. The enzyme was mainly extracellularly attached to the cell when the organism was grown on xylan and was not released into the medium. The enzyme was purified 41-fold to apparent homogeneity. The native enzyme had an apparent molecular mass of 364 kDa and was composed of six polypeptide subunits of 61 kDa. The enzyme displayed a pH optimum of 5.5 – 6.0, and a pH stability of 5.5 – 9.0. The temperature optimum was 50°  C and the enzyme was stable up to 50°  C. Thiol groups were essential for activity, but the enzyme activity was not dependent on divalent cations. The Michaelisconstant (Km) and maximal reaction velocity (Vmax) for p-nitrophenyl-α-l-arabinofuranoside were 0.5 mm and 155 U/mg protein, respectively. The enzyme was specific for the α-linked arabinoside in the furanoside configuration. The enzyme displayed activity with arabinose-containing xylo-oligosaccharides with a polymerization degree of 2 – 5, but not with the polymeric substrates oat-spelt xylan or arabinogalactan. The enzyme belongs to the Streptomyces purpurascens-type of α-l-arabinofuranosidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Syntrophospora bryantii degraded butyrate in co-culture with methanogens that can use both H2 and formate for growth, but not in co-culture with methanogens that metabolize only H2, suggesting that in suspended cultures formate may be a more important electron carrier in the syntrophic degradation of butyrate than H2. Syntrophic butyrate oxidation was inhibited by the addition of 20 mm formate or the presence of 130 kPa H2. In the absence of methanogens, S. bryantii is able to couple the oxidation of butyrate to acetate with the reduction of pentenoate to valerate. Under these conditions, up to 300 Pa H2 was measured in the gas phase and up to 0.3 mm formate in the liquid phase. S. bryantii was unable to grow syntrophically with the aceticlastic methanogen Methanothrix soehngenii. However in triculture with Methanospirillum hungatei and Methanothrix soehngenii, S. bryantii degraded butyrate faster than in a biculture with only M. hungatei. Hydrogenase and formate dehydrogenase activities were demonstrated in cell-free extracts of S. bryantii.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...