ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-09
    Description: Throughout life, new neurons are continuously added to the dentate gyrus. As this continuous addition remodels hippocampal circuits, computational models predict that neurogenesis leads to degradation or forgetting of established memories. Consistent with this, increasing neurogenesis after the formation of a memory was sufficient to induce forgetting in adult mice. By contrast, during infancy, when hippocampal neurogenesis levels are high and freshly generated memories tend to be rapidly forgotten (infantile amnesia), decreasing neurogenesis after memory formation mitigated forgetting. In precocial species, including guinea pigs and degus, most granule cells are generated prenatally. Consistent with reduced levels of postnatal hippocampal neurogenesis, infant guinea pigs and degus did not exhibit forgetting. However, increasing neurogenesis after memory formation induced infantile amnesia in these species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akers, Katherine G -- Martinez-Canabal, Alonso -- Restivo, Leonardo -- Yiu, Adelaide P -- De Cristofaro, Antonietta -- Hsiang, Hwa-Lin Liz -- Wheeler, Anne L -- Guskjolen, Axel -- Niibori, Yosuke -- Shoji, Hirotaka -- Ohira, Koji -- Richards, Blake A -- Miyakawa, Tsuyoshi -- Josselyn, Sheena A -- Frankland, Paul W -- MOP74650/Canadian Institutes of Health Research/Canada -- MOP86762/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 May 9;344(6184):598-602. doi: 10.1126/science.1248903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812394" target="_blank"〉PubMed〈/a〉
    Keywords: Amnesia/*pathology/*physiopathology ; Animals ; Dentate Gyrus/cytology ; Female ; Guinea Pigs ; Hippocampus/*cytology ; Male ; *Memory ; Mice ; Mice, Inbred C57BL ; *Neurogenesis ; Neurons/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...