ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-05-26
    Description: Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834264/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834264/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, Geraldine -- Rasmussen, Matthew D -- Lin, Michael F -- Santos, Manuel A S -- Sakthikumar, Sharadha -- Munro, Carol A -- Rheinbay, Esther -- Grabherr, Manfred -- Forche, Anja -- Reedy, Jennifer L -- Agrafioti, Ino -- Arnaud, Martha B -- Bates, Steven -- Brown, Alistair J P -- Brunke, Sascha -- Costanzo, Maria C -- Fitzpatrick, David A -- de Groot, Piet W J -- Harris, David -- Hoyer, Lois L -- Hube, Bernhard -- Klis, Frans M -- Kodira, Chinnappa -- Lennard, Nicola -- Logue, Mary E -- Martin, Ronny -- Neiman, Aaron M -- Nikolaou, Elissavet -- Quail, Michael A -- Quinn, Janet -- Santos, Maria C -- Schmitzberger, Florian F -- Sherlock, Gavin -- Shah, Prachi -- Silverstein, Kevin A T -- Skrzypek, Marek S -- Soll, David -- Staggs, Rodney -- Stansfield, Ian -- Stumpf, Michael P H -- Sudbery, Peter E -- Srikantha, Thyagarajan -- Zeng, Qiandong -- Berman, Judith -- Berriman, Matthew -- Heitman, Joseph -- Gow, Neil A R -- Lorenz, Michael C -- Birren, Bruce W -- Kellis, Manolis -- Cuomo, Christina A -- BB/F00513X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F013566/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0400284/Medical Research Council/United Kingdom -- HHSN266200400001C/AO/NIAID NIH HHS/ -- R01 AI050113/AI/NIAID NIH HHS/ -- R01 AI075096/AI/NIAID NIH HHS/ -- R01 DE015873/DE/NIDCR NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-06/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Jun 4;459(7247):657-62. doi: 10.1038/nature08064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. geraldine.butler@ucd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19465905" target="_blank"〉PubMed〈/a〉
    Keywords: Candida/classification/genetics/*pathogenicity/*physiology ; Codon/genetics ; Conserved Sequence ; Diploidy ; *Evolution, Molecular ; Genes, Fungal/genetics ; Genome, Fungal/*genetics ; Meiosis/genetics ; Polymorphism, Genetic ; Reproduction/*genetics ; Saccharomyces/classification/genetics ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-07-22
    Description: Resistance to the limited number of available antifungal drugs is a serious problem in the treatment of Candida albicans. We found that aneuploidy in general and a specific segmental aneuploidy, consisting of an isochromosome composed of the two left arms of chromosome 5, were associated with azole resistance. The isochromosome forms around a single centromere flanked by an inverted repeat and was found as an independent chromosome or fused at the telomere to a full-length homolog of chromosome 5. Increases and decreases in drug resistance were strongly associated with gain and loss of this isochromosome, which bears genes expressing the enzyme in the ergosterol pathway targeted by azole drugs, efflux pumps, and a transcription factor that positively regulates a subset of efflux pump genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1717021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1717021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selmecki, Anna -- Forche, Anja -- Berman, Judith -- DE10641-S/DE/NIDCR NIH HHS/ -- R01 AI062427/AI/NIAID NIH HHS/ -- R01 AIO62427/PHS HHS/ -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):367-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16857942" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Antifungal Agents/*pharmacology ; Azoles/pharmacology ; Candida albicans/*drug effects/*genetics/growth & development ; Centromere/ultrastructure ; Chromosomes, Fungal ; Cytochrome P-450 Enzyme System/genetics/metabolism ; Drug Resistance, Fungal/*genetics ; Ergosterol/biosynthesis ; Fluconazole/*pharmacology ; Fungal Proteins/genetics/metabolism ; Gene Dosage ; Gene Expression Profiling ; Genes, Fungal ; *Isochromosomes ; Karyotyping ; Molecular Sequence Data ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Transcription Factors/genetics/metabolism ; Trisomy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-01
    Description: Candida albicans, the most prevalent human fungal pathogen, is considered to be an obligate diploid that carries recessive lethal mutations throughout the genome. Here we demonstrate that C. albicans has a viable haploid state that can be derived from diploid cells under in vitro and in vivo conditions, and that seems to arise through a concerted chromosome loss mechanism. Haploids undergo morphogenetic changes like those of diploids, including the yeast-hyphal transition, chlamydospore formation and a white-opaque switch that facilitates mating. Haploid opaque cells of opposite mating type mate efficiently to regenerate the diploid form, restoring heterozygosity and fitness. Homozygous diploids arise spontaneously by auto-diploidization, and both haploids and auto-diploids show a similar reduction in fitness, in vitro and in vivo, relative to heterozygous diploids, indicating that homozygous cell types are transient in mixed populations. Finally, we constructed stable haploid strains with multiple auxotrophies that will facilitate molecular and genetic analyses of this important pathogen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583542/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583542/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hickman, Meleah A -- Zeng, Guisheng -- Forche, Anja -- Hirakawa, Matthew P -- Abbey, Darren -- Harrison, Benjamin D -- Wang, Yan-Ming -- Su, Ching-hua -- Bennett, Richard J -- Wang, Yue -- Berman, Judith -- AI0624273/AI/NIAID NIH HHS/ -- AI081560/AI/NIAID NIH HHS/ -- AI081704/AI/NIAID NIH HHS/ -- F32GM096536-02/GM/NIGMS NIH HHS/ -- P200A100100/PHS HHS/ -- R01 AI062427/AI/NIAID NIH HHS/ -- R01 AI0624273/AI/NIAID NIH HHS/ -- R01 AI081704/AI/NIAID NIH HHS/ -- R15-AI090633-01A1/AI/NIAID NIH HHS/ -- R56 AI087401/AI/NIAID NIH HHS/ -- T32DE007288/DE/NIDCR NIH HHS/ -- England -- Nature. 2013 Feb 7;494(7435):55-9. doi: 10.1038/nature11865. Epub 2013 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23364695" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Candida albicans/*cytology/*genetics/growth & development/pathogenicity ; Cell Separation ; *Diploidy ; Flow Cytometry ; Gene Deletion ; Genetic Fitness ; Genetic Techniques ; *Haploidy ; Haplotypes ; Heterozygote ; Homozygote ; Male ; Mice ; Mice, Inbred ICR ; Serial Passage ; *Sex ; Stress, Physiological ; Virulence/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hickman, Meleah A -- Zeng, Guisheng -- Forche, Anja -- Hirakawa, Matthew P -- Abbey, Darren -- Harrison, Benjamin D -- Wang, Yan-Ming -- Su, Ching-hua -- Bennett, Richard J -- Wang, Yue -- Berman, Judith -- England -- Nature. 2016 Feb 11;530(7589):242. doi: 10.1038/nature16134. Epub 2015 Nov 18.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26580011" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-08
    Description: Candida krusei is a diploid, heterozygous yeast that is an opportunistic fungal pathogen in immunocompromised patients. This species also is utilized for fermenting cocoa beans during chocolate production. One major concern in the clinical setting is the innate resistance of this species to the most commonly used antifungal drug fluconazole. Here, we report a high-quality genome sequence and assembly for the first clinical isolate of C. krusei , strain 81-B-5, into 11 scaffolds generated with PacBio sequencing technology. Gene annotation and comparative analysis revealed a unique profile of transporters that could play a role in drug resistance or adaptation to different environments. In addition, we show that, while 82% of the genome is highly heterozygous, a 2.0 Mb region of the largest scaffold has undergone loss of heterozygosity. This genome will serve as a reference for further genetic studies of this pathogen.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...