ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2020-02-12
    Description: In recent decades, it has been observed that most forest fires in Europe were caused by people. Extreme droughts, which are more often prolonged, can increase the risk of forest fires, not only in southern Europe but also, in Central Europe. Nonetheless, catastrophic fire events are not well recognized in the Central European Lowlands (CEL), where large forest complexes are located. Knowledge of past fire activity in this part of Europe is scarce, although several fires have occurred in this area during the previous millennia. Large coniferous forest monocultures located in the CEL are highly susceptible to fires and other disturbances. Here, we present a case study from the Tuchola Pinewoods (TP; northern Poland), where large pine monocultures are present. The main aim of this study is to document the potential effects past land management has on modern day disturbance regimes using state-of-the-art paleoecological data, historical documents and cartographic materials. We then present a protocol that will help forest managers utilize long-term paleoecological records. Based on paleoecological investigations, historical documents, and cartographic materials, our results show that, in the past 300 years, the TP witnessed not only disastrous fires and but also windfalls by tornados and insect outbreaks. A change in management from Polish to Prussian/German in the 18th century led to the transformation of mixed forests into Scots pine monocultures with the purpose to allow better economic use of the forest. Those administrative decisions led to an ecosystem highly susceptible to disturbances. This article provides a critical review of past forest management as well as future research directions related to the impacts of fire risk on land management and ecosystem services: (a) habitat composition and structure (biodiversity); (b) natural water management; and (c) mitigation of climate changes. Designated forest conditions, management, and future fire risk are a controversial and highly debated topic of forest management by Forestry Units. More research will allow the gathering of reliable information pertinent to management practices with regard to the current fire risks. It is necessary to develop a dialog between scientists and managers to reduce the risk of fires in projected climate change.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: This paper presents the results of multiproxy research (pollen, charcoal, plant macrofossil and testate amoebae) on the biogenic deposits core from Gorodetsky Moch, an ombrotrophic peatland in western Russia (Western Dvina Lakeland). We reconstructed the impact of disturbance on peatland development in the last 300 years by using chronology of the records based on 14C and 210Pb data set. The multiproxy reconstruction was compared with changes in the land cover using historical maps and Corona images, which provides a unique spatial analysis of past ecological and land-use changes. We aimed to determine the effect of local disturbances (drainage) and land-use changes (landscape openness) on the development of the peatland during the last 300 years. Our study suggests that human activity had a crucial impact on the development of the peatland in the last centuries. The analysis of testate amoebae and plant macrofossils revealed a clear disturbed layer in the second half of the 20th century CE. Most probably, the drainage of the peatland triggered changes in the community of testate amoebae and plants, thereby causing a functional shift in Sphagnum peatland ecosystem. The hydrological stress and vegetation composition shift led to the collapse of mixotrophic testate amoebae. However, the peatland showed strong resilience and recovered toward the end of the 20th century CE and the beginning of the 21st century CE, despite the lower water table. Our study shows an example of the peatland ecosystem that experienced a considerable stress but finally sustained the former function.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...