ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: PIK M 370-96-0436
    Type of Medium: Monograph available for loan
    Pages: 234 p.
    Edition: 1. ed.
    ISBN: 0521580226
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 72 (1988), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Ingestad, T. and Ågren, G. I. 1988. Nutrient uptake and allocation at steady-state nutrition. - Physiol. Plant. 72: 450–459.Net nutrient uptake and translocation rates are discussed for conditions of steady-state nutrition and growth. Under these conditions, the relative uptake rate is equal to the relative growth rate, for whole plants as well as for plant parts, since the root/shoot ratio and internal concentrations remain stable. The nutrient productivity and the minimum internal concentration are parameters characteristic for the plant and the nutrient. A conceptual, mathematical model, based on these two fundamental parameters is used for calculation and prediction of the net nutrient uptake rate, which is required to maintain steady-state nutrition at a specified internal nutrient concentration or relative growth rate. When uptake rate is expressed on the basis of the root growth rate, there is, up to optimum, a strong linear relationship between uptake rate and the internal concentration of the limiting nutrient. More complicated and less consistent relationships are obtained when uptake rate is related to root biomass.The limiting factor for suboptimum uptake is the amount of nutrients becoming available at the root surface. When replenishment is efficient, e.g. with vigorous stirring, the concentration requirement at the root surface appears to be extremely low, even at optimum. In the suboptimum range of nutrition, the effect of nutrient status on root growth rate is a critical factor with a strong feed-back on nutrition, growth and allocation. At supraoptimum conditions, the uptake mechanism is interpreted as a protection against too high uptake rates and internal concentrations at high external concentration.In birch (Betula pendula Roth.), the allocation of nitrogen to the shoots is high compared to that of potassium and also to that of phosphorus at low nitrogen or phosphorus status. With decreasing stress, phosphorus allocation becomes more and more similar to nitrogen allocation. The formulation of a mathematical model for calculation of allocation of biomass and nutrients requires more exact information on the quantitative dependence of the growth-regulating processes on nutrition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: In order to analyse temperature effects on decomposition of organic matter, we tested the following hypothesis: Can an Arrhenius type of equation with constant parameter values for the temperature response of decomposer growth rate adequately describe decomposition of organic matter or must some additional properties be made functions of temperature? Possible temperature effects were analysed by aggregating data in different ways from an experiment with 14C-labelled wheat material incubated in the laboratory at different temperatures and with soil materials collected from seven coniferous forest stands in Europe. Our analysis shows that it is possible to let all the temperature dependence reside in the decomposer growth rate. The analysis also supports the use of an Arrhenius type of equation for the temperature response of decomposer growth rate but with the parameters specific for each soil, or at least a distinction between organic and mineral horizons seems necessary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: In a forest ecosystem at steady state, net carbon (C) assimilation by plants and C loss through soil and litter decomposition by heterotrophic organisms are balanced. However, a perturbation to the system, such as increased mean soil temperature, will lead to faster decay, enhancing CO2 release from decomposers, and thus upsetting the balance. Recent in situ experiments have indicated that the stimulation of soil respiration following a step increase in annual average soil temperature declines over time. One possible explanation for this decline may be changes in substrate availability. This hypothesis is examined by using the ecosystem model G'DAY, which simulates C and nitrogen (N) dynamics in plants and soil.We applied the model to observations from a soil-warming experiment in a Norway spruce (Picea abies (L.) Karst.) stand by simulating a step increase of soil temperature. The model provided a good qualitative reproduction of the observed reduction of heterotrophic respiration (Rh) under sustained warming. The simulations showed how the combined effects of faster turnover and reduced substrate availability lead to a transient increase of Rh. The simulated annual increase in Rh from soil was 60% in the first year after perturbation but decreased to 30% after a decade.One conclusion from the analysis of the simulations is that Rh can decrease even though the temperature response function for decomposition remains unchanged. G'DAY suggests that acclimation of Rh to soil warming is partly an effect of substrate depletion of labile C pools during the first decade of warming as a result of accelerated rates of mineralization. The response is attributed mainly to changing levels of C in pools with short time constants, reflecting the importance of high-quality soil C fractions. Changes of the structure or physiology of the decomposer community were not invoked. Therefore, it becomes a question of definition whether the simulated dynamics of the declining response of CO2 release to the warming should be named acclimation or seen as a natural part of the system dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 64 (1985), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A theory is developed on the assumption that growth of plants is determined by the current amount of nitrogen in the plants. The nitrogen-growth relation is formalized in the nitrogen productivity concept (amount of biomass produced per amount of nitrogen in the biomass and per unit of time), which is essentially a constant for a given species under fixed environmental conditions. A number of results follow for increases in whole plant biomass: (A) The relative growth rate is a linear function of the internal nitrogen concentration. (B) The maximal relative growth rate uniquely determines the scaling of the time axis. (C) Exponential growth is consistent only with stable internal nitrogen concentration. Dose-response curves expressed in reduced variables (the ratio between a variable and the same variable for a plant growing under optimal conditions) are universal, so that all species and all environmental conditions yield the same curve. This is confirmed by experimental data. The shape (linear, exponential, etc.) of the nitrogen uptake curve is the only parameter differentiating these universal curves. The Mitscherlich curve or variations of it can be fitted very closely to the derived dose-response curves, except under exponential growth. A conclusion drawn from the analysis is that the results of nutrition experiments cannot be properly interpreted unless the variation with time of the amount of nitrogen in the plant is known. The theory can be extended to more complex situations, for example, time-varying environmental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1435-0629
    Keywords: Key words: multiple-element limitation (MEL); biogeochemical model; climate change; plant competition; carbon–nitrogen interactions; nutrient use efficiency; relative growth rate; temperature; CO2.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Vegetation growth characteristics influence ecosystem biogeochemistry and must be incorporated in models used to project biogeochemical responses to climate variations. We used a multiple-element limitation model (MEL) to examine how variations in nutrient use efficiency (NUE) and net primary production to biomass ratio (nPBR) affect changes in ecosystem C stocks after an increase in temperature and atmospheric CO2. nPBR influences the initial rates of response, but the magnitude and direction of long-term responses are determined by NUE. MEL was used to simulate responses to climate change in communities composed of two species differing in nPBR and/or NUE. When only nPBR differed between the species, the high-nPBR species outgrew the low-nPBR species early in the simulations, but the shift in dominance was transitory because of secondary N limitations. High-NUE species were less affected by secondary N limitations and were therefore favored under elevated CO2. Increased temperature stimulated N release from soil organic matter (SOM) and therefore favored low-NUE species. The combined release from C and N limitation under the combination of increased temperature and elevated CO2 favored high-NUE species. High C:N litter from high-NUE species limited the N-supply rate from SOM, which favors the dominance of the high-NUE species in the short term. However, in the long term increased litter production resulted in SOM accumulation, which reestablished a N supply rate favorable to the reestablishment and dominance of the low-NUE species. Conditions then reverted to a state favorable to the high-NUE species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 62 (1998), S. 1000-1005 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 42 (1979), S. 375-376 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a recently published energy budget for the larvae of the leafcutter bee (Wightman and Rogers, Oecologia (Berl.) 36 (1978) 245–257) respiration as estimated by respirometry amounted to only 67% of the respiration as estimated from the difference between assimilation and production. In this note it is shown that this discrepancy seems to result from an incorrect value of the oxycalorific equivalent and that a more reasonable value makes the two estimates of respiration agree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 168-169 (1995), S. 15-20 
    ISSN: 1573-5036
    Keywords: growth ; nutrition ; reference values ; relative addition/uptake/growth rate ; steady-state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Strictly controlled experiments with plants, acclimatized under steady-state conditions and grown for a sufficiently long time period to get reliable and representative measurements, are necessary to obtain plant responses in precise terms (reference values). It is then possible to reproduce and compare experimental results with a high accuracy and to establish fundamental plant properties in an unambiguous and unifying terminology. Two kinds of growth determining factors can be distinguished: 1) Mass transport, i.e. variables that express flux rates of carbon and mineral nutrients in relation to plant size and requirements (relative addition and uptake rates). These factors influence the relative growth rate, one at a time (Liebig's law of the minimum). 2) Factors that influence the mass transports, i.e. non-elemental resources, e.g. light and water availability, and modulators, e.g. genome, nutrient status and temperature. These factors interact in orthogonal relationships with each other and can be specified in normalized terms when the optimum value is known.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 43 (1980), S. 83-86 
    ISSN: 1573-5052
    Keywords: Adaptation ; Colonization ; Environmental stochasticity ; Phenology ; Weather variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant species co-inhabiting a given geographical region often have distinetly different times of flowering. It is shown that such phenological spread, duc to short-term stochastic variation in weather variables, relaxes competition for empty sites to be colonized by diaspores. For sufficiently large spreads stable coexistence becomes possible. The applicability of the proposed hypothesis to the observed instances of phenological spread is discussed and shown to extend beyond that of other current theories.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...