ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: mitochondria ; permeability transition ; adenine nucleotide translocase ; carboxyatractyloside ; copper ; mitochondrial calcium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Addition of 5 μM copper to rat kidney mitochondria enhances the effect of carboxyatractyloside and oleate on pore opening, in a cyclosporin A-sensitive fashion. The effects of the pair copper-carboxyatractyloside were observed on matrix Ca2+ efflux, mitochondrial swelling and on the transmembrane electric gradient. The effect of Cu2+ emphasizes the importance of membrane thiol groups located, probably, in the ADP/ATP translocase (ANT), on permeability transition. It was also found that Cu2+ does not block the fluorescent label of ANT by eosin 5-maleimide, but abolishes the inhibition by CAT on the labeling. This suggests that the binding of Cu2+ to cysteine residues of ANT promotes a conformational change in the carrier, strengthening the effect of CAT and oleate on membrane leakage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 21 (1989), S. 335-345 
    ISSN: 1573-6881
    Keywords: Disulfiram ; antabuse ; Ca2+ release ; mitochondria ; kidney
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The effect of the alcohol-deterrent drug, disulfiram, on mitochondrial Ca2+ content was studied. Addition of this drug (20 µM) to mitochondria induces a complete loss of accumulated Ca2+. The calcium release is accompanied by a collapse of the transmembrane potential, mitochondrial swelling, and a diminution of the NAD(P)H/NAD(P) radio. These effects of disulfiram depend on Ca2+ accumulation; thus, ruthenium red reestablished the membrane δψ and prevents the oxidation of pyridine nucleotides. The binding of disulfiram to the membrane sulfhydryls appeared to depend on the metabolic state of mitochondria, as well as on the mitochondrial configuration. In addition, it is shown that modification of 9 nmol -SH groups per mg protein suffices to induce the release of accumulated Ca2+.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6881
    Keywords: Mitochondrial calcium ; inorganic phosphate ; membrane permeability transition ; calcium transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The role of inorganic phosphate as inhibitor of mitochondrial membrane permeability transition was studied. It is shown that in mitochondria containing a high phosphate concentration, i.e., 68 nmol/mg, Ca2+ did not activate the pore opening. Conversely, at lower levels of matrix phosphate, i.e., 38 nmol/mg, Ca2+ was able to induce subsequent pore opening. The inhibitory effect of phosphate was apparent in sucrose-based media, but it was not achieved in KCl media. The matrix free Ca2+ concentration and matrix pH were lowered by phosphate, but they were always higher in K+-media. In the absence of ADP, phosphate strengthened the inhibitory effect of cyclosporin A on carboxyatractyloside-induced Ca2+ efflux. Acetate was unable to replace phosphate in the induction of the aforementioned effects. It is concluded that phosphate preserves selective membrane permeability by diminishing the matrix free Ca2+ concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6881
    Keywords: Mitochondria ; Ca2+ uniporter ; calcium transport inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract For many years the calcium uniporter has eluded attempts of purification, partly because of the difficulties inherent in the purification of low-abundance hydrophobic proteins (Reed and Bygrave, 1974). Liquid-phase preparative isoelectric focusing improved the fractionation of mitochondrial membrane proteins. A single 6-h run resulted in a 90-fold increase in specific activity of pooled active fractions over a semipurified fraction, allowing for enrichment of the calcium transport function in cytochrome oxidase vesicles. An additional powerful tool in the isolation of the uniporter was the use of the labeled inhibitor 103Ru360 as an affinity ligand; by following this procedure a protein of 18 kDa was purified in nondenatured, but rather inactive, form. The labeled protein corresponds to the protein that showed Ca2+ transport activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 22 (1990), S. 679-689 
    ISSN: 1573-6881
    Keywords: Dicylcohexylcarbodiimide: DCCD: Ca2+ release ; Kidney mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The effect of the alkylating reagent dicyclohexylcarbodiimide (DCCD) on mitochondrial Ca2+ content was studied. The results obtained indicate that DCCD at a concentration of 100 µM induces mitochondrial Ca2+ efflux. This reaction is accompanied by an increasing energy drain on the system, stimulation of oxygen consumption, and mitochondrial swelling. These DCCD effects can be partially suppressed by supplementing the incubation medium with 1 mM phosphate. By electrophoretic analysis on polyacrylamide-sodium dodecyl sulfate, it was found that DCCD binds to a membrane component with anM r of 20 to 29 kDa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 23 (1991), S. 889-902 
    ISSN: 1573-6881
    Keywords: Ca2+ transport ; liposomes ; ruthenium red ; mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract We describe a calcium transport that is sensitive to ruthenium red in liposomes reconstituted with mitochondrial extracts. This system is able to build an internally negative membrane potential, which allows the electrogenic influx of Ca2+ and Sr2+. Proteins with molecular weights higher than 35 kDa were incorporated to the vesicles, and enhanced the accumulation of the cation in an energy-dependent fashion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6881
    Keywords: Matrix calcium ; BAT mitochondria ; membrane permeability transition ; adenine nucleotide translocase ; calcium transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The role of the adenine nucleotide translocase on Ca2+ homeostasis in mitochondria from brown adipose tissue was examined. It was found that in mitochondria incubated with 50 μM Ca2+, ADP was not needed to retain the cation, but it was required for strengthening the inhibitory effect of cyclosporin on membrane permeability transition as induced by menadione. In addition, carboxyatractyloside was unable to promote matrix Ca2+ release, even though it inhibits the ADP exchange reaction. However, when the Ca2+ concentration was increased to 150 μM, carboxyatractyloside did induce Ca2+ release, and ADP favored Ca2+ retention. Determination of cardiolipin content in the inner membrane vesicles showed a greater concentration in brown adipose tissue mitochondria than that found in kidney mitochondria. It is suggested that the failure of the adenine nucleotide translocase to influence membrane permeability transition depends on the lipid composition of the inner membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 31 (1999), S. 551-557 
    ISSN: 1573-6881
    Keywords: Calcium uniporter inhibitors ; mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The recent finding that the inhibition of Ca2+-stimulated respiration by ruthenium red is mainlydue to a binuclear ruthenium complex (Ru360) present in the commercial samples of the classicalinhibitor ruthenium red (Ying et. al., 1991), showed that this complex is the more potent andspecific inhibitor of the mitochondrial calcium uniporter. This work was aimed to provideinsights into the mechanism by which Ru360 and other ruthenium-related compounds inhibitscalcium uptake. Ruthenium red and a synthesized analog (Rrphen) were compared with Ru360.The inhibition by this binuclear complex was noncompetitive, with a K i of 9.89 nM. Thenumber of specific binding sites for Ru360 was 6.2 pmol/mg protein. Ruthenium red and Ru360were mutually exclusive inhibitors. Bound La3+ was not displaced by Ru360. Rrphen was theleast effective for inhibiting calcium uptake. The results support the notion of a specific bindingsite in the uniporter for the polycationic complexes and a negative charged region from thephospholipids in the membrane, closely associated with the uniporter inhibitor-binding site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6881
    Keywords: Triphenyltin ; mitochondrial Ca2+ ; trialkytin compound
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The effect of triphenyltin on mitochondrial Ca2+ content was studied. It was found that this trialkyltin compound induces an increase in membrane permeability that leads to Ca2+ release, drop of the transmembrane potential, and efflux of matrix proteins. Interestingly, cyclosporin A was unable to inhibit triphenyltin-induced Ca2+ release. Based on these results it is proposed that the hyperpermeable state is produced by modification of 2.25 nmol of membrane thiol groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-6881
    Keywords: Calcium uptake ; uniporter ; mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract This paper presents results of experiments designed to further purify the membrane system involved in mitochondrial calcium transport. A partially purified extract, which transported calcium with a specific activity of 1194 nmol45Ca2+/mg protein/5 min, was used to obtain mouse hyperimmune serum. This serum inhibited calcium uptake both in mitoplasts and in vesicles reconstituted with mitochondrial proteins containing cytochrome oxidase. Western blot analysis of the semipurified fraction showed that the serum recognized specifically two antigens of 75 and 20 kDa. Both antibodies were purified by elution from the nitrocellulose sheets and their inhibition capacity was analyzed. The antibody that recognized the 20-kDa protein produced a higher degree of inhibition than the other one.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...