ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-29
    Description: Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitano, Jun -- Ross, Joseph A -- Mori, Seiichi -- Kume, Manabu -- Jones, Felicity C -- Chan, Yingguang F -- Absher, Devin M -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Kingsley, David M -- Peichel, Catherine L -- P50 HG002568/HG/NHGRI NIH HHS/ -- P50 HG002568-08/HG/NHGRI NIH HHS/ -- P50 HG02568/HG/NHGRI NIH HHS/ -- R01 GM071854/GM/NIGMS NIH HHS/ -- R01 GM071854-05/GM/NIGMS NIH HHS/ -- T32 GM07270/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1079-83. doi: 10.1038/nature08441. Epub 2009 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19783981" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Crosses, Genetic ; Female ; *Genetic Speciation ; Hybridization, Genetic ; Infertility, Male/genetics ; Japan ; Male ; Mating Preference, Animal ; Oceans and Seas ; Pacific Ocean ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Reproduction/genetics/physiology ; Sex Characteristics ; Sex Chromosomes/*genetics ; Smegmamorpha/anatomy & histology/classification/*genetics/*physiology ; Social Isolation ; Y Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-17
    Description: The molecular mechanisms underlying major phenotypic changes that have evolved repeatedly in nature are generally unknown. Pelvic loss in different natural populations of threespine stickleback fish has occurred through regulatory mutations deleting a tissue-specific enhancer of the Pituitary homeobox transcription factor 1 (Pitx1) gene. The high prevalence of deletion mutations at Pitx1 may be influenced by inherent structural features of the locus. Although Pitx1 null mutations are lethal in laboratory animals, Pitx1 regulatory mutations show molecular signatures of positive selection in pelvic-reduced populations. These studies illustrate how major expression and morphological changes can arise from single mutational leaps in natural populations, producing new adaptive alleles via recurrent regulatory alterations in a key developmental control gene.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, Yingguang Frank -- Marks, Melissa E -- Jones, Felicity C -- Villarreal, Guadalupe Jr -- Shapiro, Michael D -- Brady, Shannon D -- Southwick, Audrey M -- Absher, Devin M -- Grimwood, Jane -- Schmutz, Jeremy -- Myers, Richard M -- Petrov, Dmitri -- Jonsson, Bjarni -- Schluter, Dolph -- Bell, Michael A -- Kingsley, David M -- P50 HG002568/HG/NHGRI NIH HHS/ -- P50 HG002568-09/HG/NHGRI NIH HHS/ -- P50 HG02568/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):302-5. doi: 10.1126/science.1182213. Epub 2009 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007865" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Biological Evolution ; Chromosome Fragile Sites ; Chromosome Mapping ; Crosses, Genetic ; DNA, Intergenic ; *Enhancer Elements, Genetic ; Fish Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Paired Box Transcription Factors/*genetics ; Pelvis/anatomy & histology ; Selection, Genetic ; *Sequence Deletion ; Smegmamorpha/*anatomy & histology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-07
    Description: Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322419/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322419/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Felicity C -- Grabherr, Manfred G -- Chan, Yingguang Frank -- Russell, Pamela -- Mauceli, Evan -- Johnson, Jeremy -- Swofford, Ross -- Pirun, Mono -- Zody, Michael C -- White, Simon -- Birney, Ewan -- Searle, Stephen -- Schmutz, Jeremy -- Grimwood, Jane -- Dickson, Mark C -- Myers, Richard M -- Miller, Craig T -- Summers, Brian R -- Knecht, Anne K -- Brady, Shannon D -- Zhang, Haili -- Pollen, Alex A -- Howes, Timothy -- Amemiya, Chris -- Broad Institute Genome Sequencing Platform & Whole Genome Assembly Team -- Baldwin, Jen -- Bloom, Toby -- Jaffe, David B -- Nicol, Robert -- Wilkinson, Jane -- Lander, Eric S -- Di Palma, Federica -- Lindblad-Toh, Kerstin -- Kingsley, David M -- 095908/Wellcome Trust/United Kingdom -- P50 HG002568/HG/NHGRI NIH HHS/ -- P50 HG002568-09/HG/NHGRI NIH HHS/ -- P50 HG002568-09S1/HG/NHGRI NIH HHS/ -- P50-HG002568/HG/NHGRI NIH HHS/ -- R01 HG003474/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Apr 4;484(7392):55-61. doi: 10.1038/nature10944.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22481358" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Alaska ; Animals ; Aquatic Organisms/genetics ; *Biological Evolution ; Chromosome Inversion/genetics ; Chromosomes/genetics ; Conserved Sequence/genetics ; Ecotype ; Female ; Fresh Water ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Molecular Sequence Data ; Seawater ; Sequence Analysis, DNA ; Smegmamorpha/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-10
    Description: Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Although this process is a major generator of biodiversity, its genetic basis is still poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces the growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but depend on the ecological context.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149549/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149549/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnegard, Matthew E -- McGee, Matthew D -- Matthews, Blake -- Marchinko, Kerry B -- Conte, Gina L -- Kabir, Sahriar -- Bedford, Nicole -- Bergek, Sara -- Chan, Yingguang Frank -- Jones, Felicity C -- Kingsley, David M -- Peichel, Catherine L -- Schluter, Dolph -- F32 GM086125/GM/NIGMS NIH HHS/ -- F32GM086125/GM/NIGMS NIH HHS/ -- P30 CA015704/CA/NCI NIH HHS/ -- P50 HG002568/HG/NHGRI NIH HHS/ -- R01 GM089733/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jul 17;511(7509):307-11. doi: 10.1038/nature13301. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Fred Hutchinson Cancer Research Center, Human Biology and Basic Sciences Divisions, 1100 Fairview Avenue North, Seattle, Washington 98109, USA [2] University of British Columbia, Biodiversity Research Centre and Zoology Department, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada. ; University of California at Davis, Department of Evolution and Ecology, One Shields Avenue, Davis, California 95616, USA. ; EAWAG, Department of Aquatic Ecology, Center for Ecology, Evolution, and Biogeochemistry, Seestrasse 79, 6047 Kastanienbaum, Switzerland. ; University of British Columbia, Biodiversity Research Centre and Zoology Department, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Uppsala University, Department of Animal Ecology, Evolutionary Biology Centre (EBC), Norbyvagen 18D, SE-75236 Uppsala, Sweden [2] Swedish University of Agricultural Sciences, Department of Aquatic Resources, Stangholmsvagen 2, SE-17893 Drottningholm, Sweden. ; Stanford University School of Medicine, Department of Developmental Biology and Howard Hughes Medical Institute, 279 Campus Drive, Stanford, California 94305, USA. ; Fred Hutchinson Cancer Research Center, Human Biology and Basic Sciences Divisions, 1100 Fairview Avenue North, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909991" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biodiversity ; Body Size ; *Ecology ; Feeding Behavior ; *Genetic Speciation ; Phenotype ; Selection, Genetic ; Smegmamorpha/anatomy & histology/*genetics/growth & development/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 81 (2002), S. 757-759 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Mass production of ZnO nanowires, nanoribbons, and needle-like rods has been achieved by a simple method of thermal evaporation of ZnO powders mixed with graphite. Metallic catalysts, carrying gases, and vacuum conditions are not necessary. Temperature is the critical experimental parameter for the formation of different morphologies of ZnO nanostructures. Zn or Zn suboxide plays a crucial role for the nucleation of ZnO nanostructures. The as-prepared ZnO nanowires consist of single crystalline cores and thin amorphous shells. As determined by electron diffraction, the growth direction of ZnO nanowires is [001], which has no orientation relationship with the substrate. A strong room-temperature photoluminescence in ZnO nanostructures has been demonstrated. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-21
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-10-20
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-07-22
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-09-29
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-06
    Description: Vertebrate sensory systems have evolved remarkable diversity, but little is known about the underlying genetic mechanisms. The lateral line sensory system of aquatic vertebrates is a promising model for genetic investigations of sensory evolution because there is extensive variation within and between species, and this variation is easily quantified. In the present study, we compare the lateral line sensory system of threespine sticklebacks ( Gasterosteus aculeatus ) from an ancestral marine and a derived benthic lake population. We show that lab-raised individuals from these populations display differences in sensory neuromast number, neuromast patterning, and groove morphology. Using genetic linkage mapping, we identify regions of the genome that influence different aspects of lateral line morphology. Distinct loci independently affect neuromast number on different body regions, suggesting that a modular genetic structure underlies the evolution of peripheral receptor number in this sensory system. Pleiotropy and/or tight linkage are also important, as we identify a region on linkage group 21 that affects multiple aspects of lateral line morphology. Finally, we detect epistasis between a locus on linkage group 4 and a locus on linkage group 21; interactions between these loci contribute to variation in neuromast pattern. Our results reveal a complex genetic architecture underlying the evolution of the stickleback lateral line sensory system. This study further uncovers a genetic relationship between sensory morphology and non-neural traits (bony lateral plates), creating an opportunity to investigate morphological constraints on sensory evolution in a vertebrate model system.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...