ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Pb(Mg1/3Ta2/3)0.7Ti0.3O3 thin films of single perovskite phase were successfully synthesized by using the RF sputtering deposition technique, followed by post-thermal annealing. While the perovskite structure of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 is rather unstable, phase evolution in the thin films was manipulated by controlling both working pressure during the sputtering process and post-thermal annealing temperature. The desirable perovskite phase was promoted by increasing the working pressure in the range of 10–25 mTorr, followed by thermal annealing at 600°C. The ferroelectric, dielectric, and polarization behaviors of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 films were characterized over a wide range of frequencies. They are strongly affected by the film thickness, where the relative permittivity and remanent polarization increase, while the coercive field decreases with increasing film thickness in the range of 115–360 nm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 0.6Pb(Ni1/2W1/2)O3·0.4PbTiO3(0.6PNW·0.4PT) of complex perovskite structure is successfully synthesized by mechanical activation of mixed oxide composition, followed by sintering at 950°C. It exhibits a considerably stable temperature dependence of dielectric constant over the wide temperature range of −120° to 20°C, although there occurs a dielectric peak at around 74°C. Raman spectroscopic studies show the coexistence of tetragonal and pseudocubic perovskite phases on sintering at 950°C, which are attributed to the inhomogeneous distribution of PbTiO3 arising from mechanical activation. The dielectric behavior can be fine tuned by thermal annealing at 750°C, leading to phase redistribution in PNW-PT.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: B-site cation order–disorder transition induced by mechanical activation was observed in Pb(Mg1/3Nb2/3)O3–Pb(Mg1/2W1/2)O3 (PMN–PMW) solid solution, which was examined using both XRD diffraction and Raman spectroscopic study. The order–disorder transition is composition dependent. Mechanical activation triggers the B-site disordering, which can be steadily recovered by thermal annealing at elevated temperature, i.e., at temperatures around 600°C. Raman spectroscopy demonstrated that there existed tiny ordered microdomains in 0.4PMN·0.6PMW subjected to up to 20 h of mechanical activation, although they cannot be shown by X-ray diffraction. This is a result of the equilibrium between the mechanical destruction and temperature-facilitated recovering at the collision points during mechanical activation. It is therefore unlikely that a complete disordering can be realized in PMN–PMW by mechanical activation. The disordering in PMN–PMW triggered by mechanical activation occurs simultaneously with the refinement in crystallite size at the initial stage of mechanical activation, suggesting that the fragmentation of crystallites is responsible for the order–disorder transition at least during the initial stage of mechanical activation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Nanosized ZnO particles are successfully synthesized via mechanical activation of a zinc nitrate hydroxide hydrate (Zn5(NO3)2(OH)8·2H2O) precursor in NaCl matrix for 15 h. The ZnO particles obtained are in the nanosize range of ∼20 nm, with a well-established hexagonal morphology. They compare favorably with those derived from conventional calcination of the precursor. The decomposition of Zn5(NO3)2(OH)8·2H2O precursor and formation of nanocrystalline ZnO cannot be completed by mechanical activation in the absence of NaCl, which acts as both an effective dispersing matrix and drying agent although it remains chemically inert during mechanical activation. The powder derived from calcination at 400°C does not possess powder characteristics comparable to that of the powder derived from the mechanical activation in NaCl, because of the extensive particle coarsening and aggregation at the calcination temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Twenty hours of mechanical activation of mixed oxides at room temperature led to the formation of Pb(Mg1/3Nb2/3)O3 (PMN) in excess PbO. The crystallinity of the activation-derived perovskite PMN phase was further established when the activated PMN–PbO phase mixture was subjected to calcination at 800°C. Pyrochlores, such as Pb3Nb4O13 and Pb2Nb2O7, were not observed as transitional phases on mechanical activation and subsequent calcination, although 50% excess PbO was deliberately added. The perovskite PMN phase was recovered by washing off excess PbO using acetic acid solution at room temperature. It was sintered to a relative density of 98.9% of theoretical at 1200°C for 1 h and the sintered PMN exhibited a dielectric constant of ∼14 000 at 100 Hz and a Curie temperature of −11°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mechanical activation-triggered crystallization in PbNb2O6-based glass was dependent on the initial presence of nuclei. The crystallization cannot be initiated by mechanical activation in a highly amorphous glass composition quenched from 1350°C where PbNb2O6 nuclei did not exist. The steady growth of nanocrystallites of PbNb2O6 was observed with an increasing degree of mechanical activation in the glass quenched from 1300°C, where a density of PbNb2O6 nuclei existed before mechanical activation. The inability to nucleate in the highly amorphous oxide glass by mechanical activation is consistent with the much higher structural stability as compared with that of metallic glasses, such as Fe-Si-B. The mechanical activation-grown PbNb2O6 nanocrystals were 10–15 nm in size as observed using HRTEM and their crystallinities were further improved by thermal aging at an elevated temperature in the range of 550° to 650°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Lead zinc niobate–lead magnesium niobate–lead titanate (PZN–PMN–PT) ceramic powders of perovskite structure have been prepared via a mechanochemical processing route. A single-phase perovskite powder of ultrafine particles in the nanometer range was successfully synthesized when a MZN powder (columbite precursor) was mechanically activated for 10 h together with mixed lead and titanium oxides. The following steps are involved when the ternary oxide mixture is subjected to an increasing degree of mechanical activation. First, the starting materials are significantly refined in particle size as a result of the continuous deformation, fragmentation and then partially amorphized at the initial stage of mechanical activation. This is followed by the formation of perovskite nuclei and subsequent growth of these nuclei in the activated oxide matrix with increasing activation time. When calcined at various temperatures in the range of 500–800°C, pyrochlore phase was not detected by XRD phase analysis in the mechanochemically synthesized powder. Only a minor amount (∼2%) of pyrochlore phase was observed when the calcination temperature was raised to 850°C. The PZN–PMN–PT derived from the mechanochemically synthesized powder can be sintered to ∼98% relative density at a sintering temperature of 950°C. The PZN–PMN–PT sintered at 1100°C for 1 h exhibits a dielectric constant of ∼18 600 and a dielectric loss of 0.015 at the Curie temperature of 112°C when measured at a frequency of 0.1 kHz, together with a d33 value of 323 ×10−12 pC/N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 2061-2063 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Significant dielectric enhancement is observed in 0.3BiFeO3–0.7SrBi2Nb2O9, when a single-phase layered perovskite structure was formed by sintering the mechanically activated oxide composition. The Curie point of xBiFeO3–(1−x)SrBi2Nb2O9 was shifted upward with an increase in the BiFeO3 content. 0.3BiFeO3–0.7SrBi2Nb2O9 exhibits a dielectric constant of 1.84×105 at the Curie point of 750 °C. The lattice dimensions of xBiFeO3–(1−x)SrBi2Nb2O9 decrease slightly with an increase in the content of BiFeO3 over the composition range of x=0–0.2, while 0.3 mol BiFeO3 in SrBi2Nb2O9 led to recovery in the lattice dimensions. The much enhanced dielectric properties observed in 0.3BiFeO3–0.7SrBi2Nb2O9 are therefore due to the enlarged rattling space for both Nb5+ and in particular for smaller Fe3+. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Pb(Fe1/2Nb1/2)O3(PFN) has been successfully synthesized via a novel mechanical activation of mixed oxides and columbite precursor consisting of lead oxide and FeNbO4. A nanocrystalline perovskite phase 5–15 nm in crystallite size was formed after 30 h of mechanical activation at room temperature for both types of starting materials. However, the nanocrystalline PFN phase derived from the mixed oxides of PbO, Fe2O3, and Nb2O5is unstable, and develops pyrochlore phases when calcined at 500°–900°C, while no pyrochlore phase is observed for the material derived from the columbite precursor consisting of PbO and FeNbO5. Different sintering behavior and dielectric properties were also observed between the two types of PFN. These differences are accounted for by the compositional inhomogeneity in the material derived from the mixed oxides, as was revealed by Raman spectroscopic studies. This suggests that mechanical activation is analogous to thermal activation, where the phase development is strongly dependent on the sequence of combining the constituent oxides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Most of the chemistry-based preparation routes for bismuth titanate (BIT) involve calcination at elevated temperatures in order to realize precursor-to-ceramic conversion. In a completely different approach using an amorphous BIT hydroxide precursor, nanocrystalline particles of layered perovskite BIT are synthesized by mechanical activation, skipping the detrimental crystallite coarsening and particle aggregation encountered at high temperatures. Mechanical activation leads to nucleation and steady growth of BIT crystallites in the amorphous precursor matrix, while Bi2O3 is involved as an intermediate transitional phase. The activation-derived BIT particles demonstrate a rounded morphology of ∼50 nm in size. This is in contrast to the BIT derived from calcination of the coprecipitated precursor at 600°C that is dominated by coarsened platelike particles. The former is sintered to a density of 〉95% theoretical at 875°C for 2 h, leading to a dielectric constant of ∼1260 when measured at 1 MHz and the Curie temperature of 646°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...