ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 100 (1978), S. 2040-2048 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words AFLP ; Heteroduplex ; Intercross marker ; Linkage map ; Populus deltoides ; Testcross marker
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Amplified fragment length polymorphism (AFLP) is an efficient molecular technique for generating a large number of DNA-based genetic markers in Populus. We have constructed an integrated genetic map for a Populus backcross population derived from two selected P. deltoides clones using AFLP markers. A traditional strategy for genetic mapping in outcrossing species, such as forest trees, is based on two-way pseudo-testcross configurations of the markers (testcross markers) heterozygous in one parent and null in the other. By using the markers segregating in both parents (intercross markers) as bridges, the two parent-specific genetic maps can be aligned. In this study, we detected a number of non-parental heteroduplex markers resulting from the PCR amplification of two DNA segments that have a high degree of homology to one another but differ in their nucleotide sequences. These heteroduplex markers detected have served as bridges to generate an integrated map which includes 19 major linkage groups equal to the Populus haploid chromosome number and 24 minor groups. The 19 major linkage groups cover a total of 2,927 cM, with an average spacing between two markers of 23. 3 cM. The map developed in this study provides a first step in producing a highly saturated linkage map of the Populus deltoides genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 100 (2000), S. 743-749 
    ISSN: 1432-2242
    Keywords: Key words Additive genetic variance ; Aspen ; Dominant genetic variance ; Epistatic genetic variance ; Founder effect ; Hybrid speciation ; Multiplicative epistasis ; Outcrossing species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Determining the way in which different QTLs interact (epistasis) in their effects on the phenotype is crucial to many areas in population genetics and evolutionary biology. For example, in the founder event, a separated population readapts to a new environment through the release of cryptic gene-gene interactions. In hybrid zones, hybrid speciation must be subjected to natural selection for epistasis resulting from genomic recombinations between different species. However, there is a severe shortage of relevant methodologies to estimate epistatic genetic effects and variances. A statistical model has recently been proposed to estimate the number of QTLs, their genetic effects and allelic frequencies in segregating populations. This model is based on multiplicative gene action and derived from a two-level intra- and interspecific mating design. In this paper, we formulate a statistical procedure for partitioning the genetic variance into additive, dominant and various kinds of epistatic components in an intra- or mixed intra- and interspecific hybrid population. The procedure can be used to study the genetic architecture of fragmented populations and hybrid zones, thus allowing for a better recognition of the role of epistasis in evolution and hybrid speciation. A real example for two Populus species, P. tremuloides and P. tremula, is provided to illustrate the procedure. In this example, we found that considerable new genetic variation is formed through genomic recombination between two aspen species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 88 (1994), S. 803-811 
    ISSN: 1432-2242
    Keywords: Quantitative genetics ; Yield breeding ; Indirect selection ; Tree geometry ; Populus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Quantitative analysis of genetic covariances was used to identify the critical morphological components of wood productivity and to evaluate the efficiency of indirect selection for these components at the four levels of biological organization, (1) leaf, (2) branch, (3) main stem, and (4) whole-tree, in 4-yearPopulus deltoides ×P. simonii andP. deltoides ×P. nigra F1 progeny. A total of 44 morphometric traits measured at the four organizational levels showed varying genetic associations with productivity, variations being dependent on traits, developmental processes (current terminal, sylleptics, and proleptics), and hybridization combinations. Most of the leaf and branch traits on the current terminal and/or sylleptic branches had higher genetic correlations with stem-wood volume than those on proleptics, which resulted in larger indirect selection responses in volume, especially in DxS progeny. Indirect clonal selection on leaf size and area, branching capacity, and branch angle at age 4 years was expected to generate 10–35% more genetic gain per year in 6-year volume than direct selection on 6-year volume in the DxS progeny. The efficiency of indirect selection on the numbers of different order branches and bifurcation ratio was greater than 1.0 relative to that for direct selection for stemwood volume in the D × N progeny. Under the pressure of artificial selection for superior volume production, with the proportion selected=15%, the two F1 progeny populations exhibited distinct evolutionary divergence in tree geometry. The high-yielding D × S clones displayed a decurrent-like crown with strong apical dominance, whereas the crown ideotype for the high-yielding D × N clones was found to be excurrent-like and surrounded by dense foliage and branches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 447-457 
    ISSN: 1432-2242
    Keywords: Key words QTL mapping  ;  Genetic variance  ;   The number of QTLs  ;  Complex traits
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper summarizes and modifies quantitative genetic analyses on a pedigree used to map genetic factors (i.e., QTLs) underlying a complex trait. The total genetic variance can be exactly estimated based on the family derived from two homozygous parents for alternative alleles at all QTLs of interest. The parents, hybrids, and two backcrosses are combined to each parent, and the total number of QTLs and the number of dominant QTLs are estimated under the assumptions of gene association with the two parents, equal gene effect, no linkage, and no epistasis among QTLs. Further relaxation for each of the assumptions are made in detail. The biometric estimator for the QTL number and action mode averaged over the entire genome could provide some basic and complementary information to QTL mapping designed to detect the effect and location of specific genetic factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 102-109 
    ISSN: 1432-2242
    Keywords: Additive variance ; Clone Dominant variance ; Two-locus interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A quantitative genetic model, that uses known family structure with clonal replicates to separate genetic variance into its additive, dominance and epistatic components, is available in the current literature. Making use of offspring testing, this model is based on the theory that components of variance from the linear model of an experimental design may be expressed in terms of expected covariances among relatives. However, if interactions between a pair of quantitative trait loci (QTLs) explain a large proportion of the total epistasis, it will seriously overestimate the additive and dominance variances but underestimate the epistatic variance. In the present paper, a new model is developed to manipulate this problem by combining parental and offspring material into the same test. Under the condition described above, the new model can provide an accurate estimate for additive x additive variances. Also, its accuracy in estimating dominance and total epistatic variances is much greater than the accuracy of the previous model. However, if there is obvious evidence showing the major contribution of high-order interactions, especially among ≥ 4QTLs, to the total epistasis, the previous model is more appropriate to partition the genetic variance for a quantitative trait. The re-analysis of an example from a factorial mating design in poplar shows large differences in estimating variance components between the new and previous models when two different assumptions (lowvs high-order epistatic interactions) are used. The new model will be an alternative to estimating the mode of quantitative inheritance for species, especially for longlived, predominantly outcrossing forest trees, that can be clonally replicated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 94 (1997), S. 104-114 
    ISSN: 1432-2242
    Keywords: Key words Developmental instability  ;  Growth   ; Phenotypic plasticity  ;  Poplar (Populus)  ; Quantitative genetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Understanding the genetic mechanisms for the phenotypic plasticity and developmental instability of a quantitative trait has important implications for breeding and evolution. Two clonally replicated plantations of two 3-generation inbred pedigrees derived from the highly divergent species Populus trichocarpa and P. deltoides were used to examine the genetic control of macro- and micro-environmental sensitivities and their genetic relationships with the trait mean across two contrasting environments. For all stem-growth traits studied, the trait mean had a higher broad-sense heritability (H2) level than macroenvironmental sensitivity, both with much higher values than microenvironmental sensitivity. Genetic correlation analyses indicated that the trait mean was more or less independent of macro- or micro-environmental sensitivity in stem height. Thus, for this trait, the genetic difference in response to the two environments might be mainly due to epistasis between some regulatory loci for plasticity and loci for trait mean. However, for basal area and volume index, pleiotropic loci might be more important for their genetic differences between the two environments. No evidence was found to support Lerner’s (1954) homeostasis theory in which macro- or micro-environmental sensitivity is the inverse function of heterozygosity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 96 (1998), S. 447-457 
    ISSN: 1432-2242
    Keywords: Key words Growth ; Ideotype breeding ; Populus ; QTL mapping ; Quantitative variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A segregated F2 progeny derived from two highly divergent poplar species, Populus trichocarpa and P. deltoides, was used to evaluate the genetic basis of canopy structure and function in a clonally replicated plantation. The QTLs of large effect on growth, branch, and leaf traits were identified using the Populus linkage map constructed by 343 molecular markers. Stem height and harvest index appeared to be under the control of few QTLs with major effects, whereas variation in stem basal area, volume, and dry weight might be due to many more QTLs. Branch and leaf traits on sylleptics tended to include more QTLs with major effects than those on proleptics. In the environment where the pedigree was tested, sylleptics were very frequent in the P. trichocarpa parent but rare in the P. deltoides parent. For sylleptic traits for which two or more QTLs were identified, however, increases in the trait values were conditioned not only by the P. trichocarpa alleles, but also by the P. deltoides alleles. Similar findings were found for traits on proleptics that were differently expressed between the two parents. For both sylleptic and proleptic branch types, dominance (ranging from partial to over) was observed. The QTLs on specific linkage groups were found to be responsible for relationships between stem growth and its developmental components. Similar QTL clustering was also observed for morphological or developmental integration in poplar, i.e., traits with similar developmental origins are more strongly correlated with one another than traits with different developmental origins. The implications of these molecular genetic results for ideotype breeding of poplars are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 99 (1999), S. 1031-1038 
    ISSN: 1432-2242
    Keywords: Key words Average effect ; Candidate gene ; Genetic architecture ; Gymnosperm ; Megagametophyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The gymnosperms are a group of plants characterized by a haploid female gametophyte (megagametophyte). With the function of bearing the female gametes and nourishing the developing embryo, the megagametophyte has provided a simple way to understand the genetics of gymnosperm species using biochemical or genetic markers. In this paper, a quantitative genetic approach is proposed to study the genetic architecture of a quantitative trait in gymnosperms by taking advantage of the megagametophyte and the concept of average effect of a gene. Average effect describes the value associated with an allele carried by an individual and transmitted to its offspring. Through the genetic dissection of the average effect and genetic variance associated with a gamete carrying candidate genes, this approach can provide estimates of basic population genetic parameters, such as additive, dominant and epistatic effects, allelic frequencies and linkage disequilibrium. The candidate genes, known through their major mutant phenotype, have been reported in gymnosperms. An example for a candidate gene affecting lignin biosynthesis was applied to demonstrate the statistical procedures of the approach and its advantage. The conditions upon which the approach can be effectively used are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 102-109 
    ISSN: 1432-2242
    Keywords: Key words Additive variance ; Clone Dominant variance  ;  Two-locus interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A quantitative genetic model, that uses known family structure with clonal replicates to separate genetic variance into its additive, dominance and epistatic components, is available in the current literature. Making use of offspring testing, this model is based on the theory that components of variance from the linear model of an experimental design may be expressed in terms of expected covariances among relatives. However, if interactions between a pair of quantitative trait loci (QTLs) explain a large proportion of the total epistasis, it will seriously overestimate the additive and dominance variances but underestimate the epistatic variance. In the present paper, a new model is developed to manipulate this problem by combining parental and offspring material into the same test. Under the condition described above, the new model can provide an accurate estimate for additive additive variances. Also, its accuracy in estimating dominance and total epistatic variances is much greater than the accuracy of the previous model. However, if there is obvious evidence showing the major contribution of high-order interactions, especially among ≥ 4QTLs, to the total epistasis, the previous model is more appropriate to partition the genetic variance for a quantitative trait. The re-analysis of an example from a factorial mating design in poplar shows large differences in estimating variance components between the new and previous models when two different assumptions (lowvs high-order epistatic interactions) are used. The new model will be an alternative to estimating the mode of quantitative inheritance for species, especially for longlived, predominantly outcrossing forest trees, that can be clonally replicated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...