ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2019-07-13
    Description: Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number test were conducted at Wichita State University's Walter H. Beech Memorial Wind utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA's F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations. This confirmed results from previous tests with other ice shapes that indicated the data from the low Reynolds number tests could be used to understand ice-swept-wing aerodynamics at high Reynolds number. This allows ice aerodynamics testing to be performed at low Reynolds number facilities with much lower operating costs and generate results that are applicable to flight Reynolds number.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN67168 , International Conference on Icing of Aircraft, Engines and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. Some of those ice shapes are based on aircraft certification requirements. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA (Office national d'etudes et de recherches aerospatiales) F1 facility, respectively. The data collected in the Wichita State University wind tunnel provided a low-Reynolds number baseline study while the pressurized F1 facility produced data over a wide range of Reynolds and Mach numbers with the highest Reynolds number studied being approximately Re = 11.9 by 10 (sup 6). Three different fidelity representations were created based on three different icing conditions. Lower-fidelity ice shapes were created by lofting a smooth ice shape between cross-section cuts of the high-fidelity ice shape. Grit roughness was attached to this smooth ice shape as another fidelity variant. The data indicates that the geometric fidelity of the ice shapes resulted in significant differences in lift and drag. These results were similar at both facilities over the wide range of test conditions utilized.
    Keywords: Air Transportation and Safety
    Type: GRC-E-DAA-TN56726 , 2018 Atmospheric and Space Environments Conference; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States|AIAA Aviation and Aeronautics Forum and Exposition (Aviation 2018); Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for a 13.3%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the ONERA F1 pressurized wind tunnel with Reynolds numbers of 1.610(exp 6) to 11.910(exp 6) and Mach numbers of 0.09 to 0.34. Five different configurations were investigated using fully 3D, high-fidelity artificial ice shapes that maintain nearly all of the 3D ice accretion features documented in prior icing-wind tunnel tests. These large, leadingedge ice shapes were nominally based upon airplane holding in icing conditions scenarios. For three of these configurations, lower-fidelity simulations were also built and tested. The results presented in this paper show that while Reynolds and Mach number effects are important for quantifying the clean-wing performance, there is very little to no effect for an iced-wing with 3D, high-fidelity artificial ice shapes or 3D smooth ice shapes with grit roughness. These conclusions are consistent with the large volume of past research on icedairfoils. However, some differences were also noted for the associated stalling angle of the iced swept wing and for various lower-fidelity versions of the leading-edge ice accretion. More research is planned to further investigate the key features of ice accretion geometry that must be simulated in lower-fidelity versions in order to capture the essential aerodynamics.
    Keywords: Air Transportation and Safety
    Type: GRC-E-DAA-TN55660 , 2018 Atmospheric and Space Environments Conference; Jun 25, 2018 - Jun 28, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper studied the aerodynamic effects of a single scalloped ice accretion and two lower fidelity ice-shape simulations. These data were compared to the aerodynamics of a clean 8.9% scale CRM65 semispan wing model at a Reynolds number of 1.6 x 10(exp 6). The clean wing experienced an aggressive, tip-first stall and showed a small, strong leading-edge vortex at lower angle-of-attack while the iced cases showed larger, seemingly weaker leading-edge vortices at similar angles. The size of these vortices is larger for the low-fidelity ice shape. The stall pattern for the iced cases was also tip-first, but more gradual than the clean wing. The high-fidelity ice shape produced streamwise flow features over the upper surface of the wing due to flow moving through gaps that exist in the ice shape geometry that disrupted the formation of the leading-edge vortices, changing the aerodynamics of the wing. These gaps do not exist in the low-fidelity shape. The low-fidelity scallop ice shape was non-conservative in its aerodynamic penalties compared to the full high-fidelity case.
    Keywords: Aircraft Design, Testing and Performance
    Type: GRC-E-DAA-TN55786 , 2018 Atmospheric and Space Environments Conference; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States|2018 AIAA Aviation and Aeronautics Forum and Exposition; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN42638 , AIAA Atmospheric and Space Environments Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-30
    Description: Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional (3D) icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind tunnel testing was carried out for a 13.3-percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind tunnel testing was conducted at the Office National dEtudes et de Recherches Arospatiales (ONERA) F1 pressurized wind tunnel with Reynolds numbers of 1.6 x 10(exp 6) to 11.9 x 10(exp 6 ) and Mach numbers of 0.09 to 0.34. Five different configurations were investigated using fully 3D, high-fidelity artificial ice shapes that maintain nearly all of the 3D ice-accretion features documented in prior icing wind tunnel tests. These large, leading-edge ice shapes were nominally based upon airplane holding in icing conditions scenarios. For three of these configurations, lower fidelity simulations were also built and tested. The results presented in this paper show that while Reynolds and Mach number effects are important for quantifying the clean-wing performance, there is very little to no effect for an iced wing with 3D, high-fidelity artificial ice shapes or 3D smooth ice shapes with grit roughness. These conclusions are consistent with the large volume of past research on iced airfoils. However, some differences were also noted for the associated stalling angle of the iced swept wing and for various lower fidelity versions of the leading-edge ice accretion. More research is planned to further investigate the key features of ice-accretion geometry that must be simulated in lower fidelity versions in order to capture the essential aerodynamics.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2019-220012 , E-19620 , AIAA–2018–3492 , GRC-E-DAA-TN61957
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20 percent semispan), Midspan (64 percent semispan) and Outboard stations (83 percent semispan) of a wing based upon a 65 percent scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 to -1.4 C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 to -6.3 C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that there are morphological characteristics of glaze and scallop ice accretion on these swept-wing models that are dependent upon the velocity. This work has resulted in a large database of ice-accretion geometry on large-scale, swept-wing models.
    Keywords: Aircraft Design, Testing and Performance; Computer Programming and Software
    Type: NASA/TM-2016-219137 , E-19263 , AIAA Paper 2016-3733 , GRC-E-DAA-TN33383 , Atmospheric and Space Environments Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 ft x 10 ft Beech wind tunnel from Reynolds numbers of 0.810(exp 6) to 2.410(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, three-dimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9% scale model.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN42235 , AIAA Atmospheric and Space Environments Conference 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...