ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Watcham, Emma P; Bentley, Michael J; Hodgson, Dominic A; Roberts, Stephen J; Fretwell, Peter; Lloyd, Jerry M; Larter, Robert D; Whitehouse, Pippa L; Leng, Melanie J; Monien, Patrick; Moreton, Steven Grahame (2011): A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quaternary Science Reviews, 30(21-22), 3152-3170, https://doi.org/10.1016/j.quascirev.2011.07.021
    Publication Date: 2023-11-04
    Description: Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.
    Keywords: Age, 14C calibrated, CALIB (Stuiver & Reimer, 1993); Age, 14C milieu/reservoir corrected (Milliken et al., 2009); Age, AMS 14C conventional; Age, dated; Age, dated material; Age, dated standard deviation; Ardley_lake; Belen_lake; Calendar age; Calendar age, maximum/old; Calendar age, minimum/young; Comment of event; Core; CORE; Event label; Fildes Peninsula, King George Island; Gaoshan_lake; Laboratory; Laguna_Tern, Lake_Albatross; Lake_Shanhaicuan; Latitude of event; Long_lake; Longitude of event; Ozero_Dlinnoye; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Probability; Sample ID; SPP1158; Yanou_lake; Yue_Ya_Hu, Laguna_Ripamonti; δ13C
    Type: Dataset
    Format: text/tab-separated-values, 928 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: We provide a global 0.5-degree grid of vertical land motion (in mm/a) of the LM17.3 glacial isostatic adjustment (GIA) model. The radially varying earth model part is profile VM5a (Peltier et al. 2015). The ice load is different to any other GIA model and combines regional ice loads without taking care of balancing the global sea-level equivalent of all ice sheets and glaciers with that expected from paleo-sea-level indicators. The regional models are: * GLAC-1D for North America (Tarasov et al. 2012), * HUY3 for Greenland (Lecavalier et al. 2014), * GLAC #71340 for Fennoscandia/Barents Sea (Tarasov et al., 2014), * ANU-ICE for Iceland, High Mountain Areas, Siberian Mountains and Tibet (Lambeck et al. 2014), * IJ04_Patagonia for Patagonia (updated from Ivins & James 2004), * ICE-6G_C for New Zealand (Argus et al. 2014, Peltier et al. 2015), * GLAC-1D for Antarctica (Briggs et al. 2014). Additional models (W12, Whitehouse et al. 2012, and IJ05_R2, Ivins et al. 2013, for Antarctica; ANU-ICE, Lambeck et al. 2017, and NAIce, Gowan et al. 2016, for North America) were tested in the development of the model but not used in the end. Little ice age is not included nor any ice mass change during the last 100 years. The eustatic sea-level equivalent at last glacial maximum amounts to 113.8 m for all ice sheets and glaciers together. Because we use an ice model that has not been tuned to fit global constraints, it may highlight areas which cannot match commonly used GIA observations. However, we note that the earth model used in our calculations is different to the earth model used in the development of some regional ice models, e.g. HUY3, ANU-ICE, IJ04_Patagonia (see respective references), thus some differences can be related to this. The LM17.3 model was introduced in Jäggi et al. (2019), and its DDK5-filtered geoid and water heights can be found in the EGSIEM plotter (http://plot.egsiem.eu/index.php?p=timeseries). The GIA model uses material compressibility and includes time-dependent coastlines and rotational feedback. The vertical land motion can be used/tested in sea-level investigations and projections. Work towards a model that incorporates 3D earth structure, and an updated ice model, is ongoing.
    Keywords: EGSIEM; European Gravity Service for Improved Emergency Management; glacial isostatic adjustment; sea level
    Type: Dataset
    Format: application/zip, 1.9 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-29
    Description: We created a 3D GNSS surface velocity field to estimate tectonic plate motion and test the effect of a set of 1D and 3D Glacial Isostatic Adjustment (GIA) models on tectonic plate motion estimates. The main motivation for creating a bespoke 3D velocity field is to include a larger number of GNSS sites in the GIA-affected areas of investigation, namely North America, Europe, and Antarctica. We created the GNSS surface velocity field using the daily network solutions submitted to the International GNSS Service (IGS) “repro2” data processing campaign, and other similarly processed GNSS solutions. We combined multiple epoch solutions into unique global epoch solutions of high stability. The GNSS solutions we used were processed with the latest available methods and models at the time: all the global and regional solutions adhere to IGS repro2 standards. Every network solution gives standard deviations of site position coordinates and the correlations between the network sites. We deconstrained and combined the global networks and aligned them to the most recent ITRF2014 reference frame on a daily level. Additionally, several regional network solutions were deconstrained and aligned to the unique global solutions. The process was performed using the Tanya reference frame combination software (Davies & Blewitt, 1997; doi:10.1029/2000JB900004) which we updated to facilitate changes in network combination method and ITRF realisation. This resulted in 57% reduction of the WRMS of the alignment post-fit residuals compared to the alignment to the previous ITRF2008 reference frame for an overlapping period. We estimated linear velocities from the time series of GNSS coordinates using the MIDAS trend estimator (Blewitt et al., 2016; doi:10.1002/2015JB012552). The sites selected through multiple steps of quality control constitute a final GNSS surface velocity field which we denote NCL20. This velocity field has horizontal uncertainties mostly within 0.5 mm/yr, and vertical uncertainties mostly within 1 mm/yr, which make it suitable for testing GIA models and estimating plate motion models.
    Keywords: 1LSU_GNSS; 1NSU_GNSS; 1ULM_GNSS; AB04_GNSS; AB08_GNSS; AB12_GNSS; AC58_GNSS; ACOR_GNSS; ACP1_GNSS; ACP6_GNSS; ACSO_GNSS; ACUM_GNSS; ADE1_GNSS; ADIS_GNSS; ADRI_GNSS; AJAC_GNSS; AL30_GNSS; AL40_GNSS; AL50_GNSS; AL60_GNSS; AL70_GNSS; AL90_GNSS; ALCI_GNSS; ALES_GNSS; ALGO_GNSS; ALIC_GNSS; ALRT_GNSS; AMC2_GNSS; ANDO_GNSS; ANG1_GNSS; ANP5_GNSS; ANTO_GNSS; AOML_GNSS; AOPR_GNSS; ARBT_GNSS; ARCM_GNSS; ARFY_GNSS; ARGI_GNSS; ARHP_GNSS; ARHR_GNSS; ARJM_GNSS; ARP3_GNSS; ARPG_GNSS; ARTU_GNSS; ASC1_GNSS; ASCG_GNSS; ASHV_GNSS; ASUB_GNSS; AUCK_GNSS; AUDR_GNSS; AUS5_GNSS; AUTN_GNSS; AVCA_GNSS; AXPV_GNSS; BACA_GNSS; BACK_GNSS; BACO_GNSS; BADH_GNSS; BAHR_GNSS; BAIA_GNSS; BAIE_GNSS; BAKE_GNSS; BAN2_GNSS; BARH_GNSS; BARN_GNSS; BAUS_GNSS; BAYR_GNSS; BBYS_GNSS; BCLN_GNSS; BELE_GNSS; BELF_GNSS; BELL_GNSS; BENN_GNSS; BET1_GNSS; BIAZ_GNSS; BIL5_GNSS; BISK_GNSS; BJCO_GNSS; BJU0_GNSS; BLA1_GNSS; BNDY_GNSS; BNFY_GNSS; BOD3_GNSS; BOGI_GNSS; BOMJ_GNSS; BOR1_GNSS; BORJ_GNSS; BORK_GNSS; BORR_GNSS; BPDL_GNSS; BRAZ_GNSS; BRFT_GNSS; BRGS_GNSS; BRIP_GNSS; BRMF_GNSS; BRMU_GNSS; BRST_GNSS; BRTW_GNSS; BRU5_GNSS; BRUS_GNSS; BSCN_GNSS; BSMK_GNSS; BUDP_GNSS; BUE1_GNSS; BUMS_GNSS; BURI_GNSS; BVHS_GNSS; BYDG_GNSS; CACE_GNSS; CAEN_GNSS; CAGL_GNSS; CAGS_GNSS; CALU_GNSS; CANT_GNSS; CAPF_GNSS; CARM_GNSS; CAS1_GNSS; CASB_GNSS; CASC_GNSS; CASP_GNSS; CAYU_GNSS; CBMD_GNSS; CBSB_GNSS; CCV5_GNSS; CEBR_GNSS; CEDU_GNSS; CEFE_GNSS; CFRM_GNSS; CGGN_GNSS; CHA1_GNSS; CHAN_GNSS; CHAT_GNSS; CHB5_GNSS; CHIZ_GNSS; CHL1_GNSS; CHPI_GNSS; CHR1_GNSS; CHT1_GNSS; CHTI_GNSS; CHUR_GNSS; CJTR_GNSS; CKIS_GNSS; CLIB_GNSS; CLK5_GNSS; CLRK_GNSS; CN13_GNSS; CN14_GNSS; CN15_GNSS; CN16_GNSS; CN23_GNSS; CN24_GNSS; CN28_GNSS; CN29_GNSS; CN33_GNSS; CN34_GNSS; CN35_GNSS; CN41_GNSS; CN46_GNSS; CN53_GNSS; CNC0_GNSS; CNIV_GNSS; CNMR_GNSS; COLA_GNSS; CONO_GNSS; CORB_GNSS; CORC_GNSS; COTE_GNSS; COVG_GNSS; COVX_GNSS; CPAR_GNSS; CRAK_GNSS; CRAO_GNSS; CRDI_GNSS; CRST_GNSS; CTAB_GNSS; CTBR_GNSS; CTGU_GNSS; CTPU_GNSS; CTWN_GNSS; CUIB_GNSS; CUSV_GNSS; CVMS_GNSS; DAKR_GNSS; DANE_GNSS; DARE_GNSS; DAVM_GNSS; DEAR_GNSS; DEFI_GNSS; DEGE_GNSS; DELM_GNSS; DENE_GNSS; DENT_GNSS; DEVI_GNSS; DGLS_GNSS; DNRC_GNSS; DOBS_GNSS; DOMS_GNSS; DOUR_GNSS; DREM_GNSS; DRV5_GNSS; DSL1_GNSS; DUBO_GNSS; DUM1_GNSS; DUPT_GNSS; EBRE_GNSS; ECSD_GNSS; EDOC_GNSS; EGLT_GNSS; EIJS_GNSS; ELEN_GNSS; ENG1_GNSS; ENIS_GNSS; ENTZ_GNSS; EPRT_GNSS; ESCO1_GNSS; ESCU_GNSS; EUR2_GNSS; EUSK_GNSS; EVPA_GNSS; EXU0_GNSS; FALL_GNSS; FFMJ_GNSS; FIE0_GNSS; FLIN_GNSS; FLIU_GNSS; FLM5_GNSS; FLRS_GNSS; FONP_GNSS; FOYL_GNSS; FREE_GNSS; FREI_GNSS; FRKN_GNSS; FTP4_GNSS; FUNC_GNSS; GAAT_GNSS; GABR_GNSS; GACC_GNSS; GACL_GNSS; GACR_GNSS; GAIA_GNSS; GAIT_GNSS; GAL1_GNSS; GANP_GNSS; GARF_GNSS; GAST_GNSS; GCEA_GNSS; GDMA_GNSS; Glacial Isostatic Adjustment (GIA) model; GLPM_GNSS; GLPS_GNSS; GLSV_GNSS; GMSD_GNSS; GNSS; GNSS Receiver; GNVL_GNSS; GODE_GNSS; GOGA_GNSS; GOPM_GNSS; GOUG_GNSS; GRAS_GNSS; GRE0_GNSS; GRIS_GNSS; GRN0_GNSS; GRTN_GNSS; GTK0_GNSS; GUAM_GNSS; GUAX_GNSS; GUIP_GNSS; GUUG_GNSS; GWWL_GNSS; HAAG_GNSS; HAC6_GNSS; HAG6_GNSS; HALY_GNSS; HAMM_GNSS; HAMP_GNSS; HARK_GNSS; HASM_GNSS; HBCH_GNSS; HBRK_GNSS; HCES_GNSS; HDIL_GNSS; HELG_GNSS; HERS_GNSS; HILB_GNSS; HILO_GNSS; HIPT_GNSS; HJOR_GNSS; HKLO_GNSS; HLFX_GNSS; HNLC_GNSS; HNPT_GNSS; HNUS_GNSS; HOB2_GNSS; HOBU_GNSS; HOE2_GNSS; HOLM_GNSS; HONS_GNSS; horizontal GIA; HOS0_GNSS; HOUM_GNSS; HOUS_GNSS; HOWE_GNSS; HOWN_GNSS; HRMM_GNSS; HRST_GNSS; HUGO_GNSS; HYDE_GNSS; IBIZ_GNSS; ICT1_GNSS; IGEO_GNSS; IGGY_GNSS; IISC_GNSS; ILDX_GNSS; ILHA_GNSS; ILSA_GNSS; ILUC_GNSS; IMBT_GNSS; IMPZ_GNSS; INAB_GNSS; INES1_GNSS; INGG_GNSS; INVM_GNSS; INWN_GNSS; IQAL_GNSS; IQUI_GNSS; IRBE_GNSS; IRKM_GNSS; ISCO_GNSS; ISPA_GNSS; IZAN_GNSS; JAB2_GNSS; JCT1_GNSS; JFNG_GNSS; JFWS_GNSS; JOEN_GNSS; JONM_GNSS; JOZE_GNSS; JXVL_GNSS; KAR0_GNSS; KARL_GNSS; KARR_GNSS; KAT1_GNSS; KAUS_GNSS; KELY_GNSS; KERM_GNSS; KEVO_GNSS; KEW5_GNSS; KHAJ_GNSS; KHAR_GNSS; KIRI_GNSS; KIRM_GNSS; KIRU_GNSS; KIVE_GNSS; KJUN_GNSS; KLOP_GNSS; KMOR_GNSS; KNGS_GNSS; KNS5_GNSS; KNTN_GNSS; KOK1_GNSS; KOKM_GNSS; KOSG_GNSS; KOUC_GNSS; KOUG_GNSS; KOUR_GNSS; KRA0_GNSS; KRSS_GNSS; KRTV_GNSS; KST5_GNSS; KSTU_GNSS; KSU1_GNSS; KULU_GNSS; KUN0_GNSS; KUNZ_GNSS; KURE_GNSS; KUUJ_GNSS; KUUS_GNSS; KUWT_GNSS; KVTX_GNSS; KWJ1_GNSS; KWST_GNSS; KYBO_GNSS; KYMH_GNSS; KYTB_GNSS; KYTC_GNSS; KYTD_GNSS; KYTE_GNSS; KYTG_GNSS; KYTH_GNSS; KYTK_GNSS; KYTL_GNSS; KYW1_GNSS; KZN2_GNSS; LAMA_GNSS; LAMT_GNSS; LANS_GNSS; LATITUDE; LCDT_GNSS; LCHS_GNSS; LCKM_GNSS; LCSB_GNSS; LEBA_GNSS; LEES_GNSS; LEIJ_GNSS; LEK0_GNSS; LEON_GNSS; LESV_GNSS; LHCL_GNSS; LHUE_GNSS; LIL2_GNSS; LKHU_GNSS; LLIV_GNSS; LMNO_GNSS; LODZ_GNSS; LOFS_GNSS; LONGITUDE; LOVM_GNSS; LPAL_GNSS; LPGS_GNSS; LPIL_GNSS; LPLY_GNSS; LROC_GNSS; LSBN_GNSS; LSUA_GNSS; LWN0_GNSS; LWX1_GNSS; LYCO_GNSS; LYNS_GNSS; LYRS_GNSS; MACC_GNSS; MADM_GNSS; MADO_GNSS; MAG0_GNSS; MAIR_GNSS; MAJU_GNSS; MALD_GNSS; MALL_GNSS; MAN2_GNSS; MAPA_GNSS; MAR6_GNSS; MARJ_GNSS; MARN_GNSS; MARS_GNSS; MAS1_GNSS; MAUI_GNSS; MAW1_GNSS; MAYZ_GNSS; MCAR_GNSS; MCD5_GNSS; MCIL_GNSS; MCM4_GNSS; MCN1_GNSS; MCNE_GNSS; MCTY_GNSS; MDOR_GNSS; MDR6_GNSS; MDVJ_GNSS; MET6_GNSS; MET7_GNSS; METG_GNSS; MFLD_GNSS; MIAR_GNSS; MICW_GNSS; MIDS_GNSS; MIGD_GNSS; MIHO_GNSS; MIHT_GNSS; MIIR_GNSS; MIKL_GNSS; MIL1_GNSS; MIMN_GNSS; MIMQ_GNSS; MIN0_GNSS; MINI_GNSS; MIPR_GNSS; MIST_GNSS; MKEA_GNSS; MLF1_GNSS; MLVL_GNSS; MNBD_GNSS; MNBE_GNSS; MNCA_GNSS; MNDN_GNSS; MNGR_GNSS; MNJC_GNSS; MNP1_GNSS; MNPL_GNSS; MNRM_GNSS; MNRT_GNSS; MNRV_GNSS; MNSC_GNSS; MNTF_GNSS; MNVI_GNSS; MOAL_GNSS; MOB1_GNSS; MOBS_GNSS; MOED_GNSS; MOEL_GNSS; MOGF_GNSS; MOPN_GNSS; MORP_GNSS; MOVB_GNSS; MPLA_GNSS; MPLE_GNSS; MRO1_GNSS; MRRN_GNSS; MSB5_GNSS; MSHT_GNSS; MSKU_GNSS; MSNA_GNSS; MSPK_GNSS; MSSC_GNSS; MSYZ_GNSS; MTMS_GNSS; MTNT_GNSS; MTY2_GNSS; NAIN_GNSS; NAMA_GNSS; NAPL_GNSS; NAS0_GNSS; NAUR_GNSS; NAUS_GNSS; NBR6_GNSS; NCDU_GNSS; NCGO_GNSS; NCJA_GNSS; NCPO_GNSS; NCSW_GNSS; NCWH_GNSS; NCWI_GNSS; NDMB_GNSS; NEDR_GNSS; NEGI_GNSS; NEIA_GNSS; NESC_GNSS; NEWL_GNSS; NHUN_GNSS; NIST_GNSS; NIUM_GNSS; NJCM_GNSS; NJHC_GNSS; NJI2_GNSS; NJOC_GNSS; NJTW_GNSS; NKLG_GNSS; NLIB_GNSS; NMKM_GNSS; NNOR_GNSS; NOR0_GNSS; NOR1_GNSS; NOR3_GNSS; NOUM_GNSS; NPLD_GNSS; NPRI_GNSS; NRCM_GNSS; NRIL_GNSS; NRL1_GNSS; NRMD_GNSS; NTUS_GNSS; NYBH_GNSS; NYBT_GNSS; NYCL_GNSS; NYCP_GNSS; NYDV_GNSS; NYFD_GNSS; NYFS_GNSS; NYFV_GNSS; NYHC_GNSS; NYHM_GNSS; NYHS_GNSS; NYIR_GNSS; NYLV_GNSS; NYMD_GNSS; NYML_GNSS; NYNS_GNSS; NYON_GNSS; NYPD_GNSS; NYPF_GNSS; NYRB_GNSS; NYST_GNSS; NYWL_GNSS; NYWT_GNSS; OAKH_GNSS; ODS5_GNSS; OHAS_GNSS; OHFA_GNSS; OHHU_GNSS; OHLI_GNSS; OHMO_GNSS; OHMR_GNSS; OHPR_GNSS; OKAN_GNSS; OKAR_GNSS; OKBF_GNSS; OKCB_GNSS; OKCL_GNSS; OKDT_GNSS; OKGM_GNSS; OKHV_GNSS; OKMA_GNSS; OKOM_GNSS; OLKI_GNSS; OMH5_GNSS; ONSM_GNSS; OPMT_GNSS; ORMD_GNSS; OSKM_GNSS; OSLS_GNSS; OSPA_GNSS; OST0_GNSS; OUAG_GNSS; OULU_GNSS; OVE0_GNSS; P032_GNSS; P033_GNSS; P037_GNSS; P038_GNSS; P039_GNSS; P040_GNSS; P042_GNSS; P043_GNSS; P044_GNSS; P049_GNSS; P050_GNSS; P051_GNSS; P052_GNSS; P053_GNSS; P054_GNSS; P055_GNSS; P070_GNSS; P728_GNSS; P775_GNSS; P776_GNSS; P777_GNSS; P778_GNSS; P779_GNSS; P780_GNSS; P802_GNSS; P803_GNSS; P807_GNSS; P817_GNSS; PAAP_GNSS; PAFU_GNSS; PALK_GNSS; PAMS_GNSS; PAPC_GNSS; PARK_GNSS; PARY_GNSS; PASA_GNSS; PASS_GNSS; PATN_GNSS; PATT_GNSS; PBCH_GNSS; PBRM_GNSS; PECE_GNSS; PICL_GNSS; PIGT_GNSS; PIRT_GNSS; PKTN_GNSS; plate motion model; PLTC_GNSS; PNBM_GNSS; PNGM_GNSS; PNR6_GNSS; POAL_GNSS; POHN_GNSS; POLV_GNSS; POR2_GNSS; POTS_GNSS; POUS_GNSS; POVE_GNSS; PRCO_GNSS; PRDS_GNSS; PREI_GNSS; PREM_GNSS; PRPT_GNSS; PSU1_GNSS; PTBB_GNSS; PTGV_GNSS; PTIR_GNSS; PUB5_GNSS; PUIN_GNSS; PULK_GNSS; PUO1_GNSS; PUYV_GNSS; PWEL_GNSS; QAQ1_GNSS; QIKI_GNSS; RAMG_GNSS; RAMO_GNSS; RANT_GNSS; RAT0_GNSS; RBAY_GNSS; RCMV_GNSS; RECF_GNSS; REDU_GNSS; REDZ_GNSS; Reference frame; RESO_GNSS; REUN_GNSS; RG13_GNSS; RG15_GNSS; RG16_GNSS; RG17_GNSS; RG18_GNSS; RG19_GNSS; RG23_GNSS; RG24_GNSS; RIC1_GNSS; RIGA_GNSS; RIO1_GNSS; RIOJ_GNSS; RIS5_GNSS; RLAP_GNSS; RMBO_GNSS; ROB4_GNSS; ROBN_GNSS; ROMU_GNSS; ROSS_GNSS; ROTH_GNSS; RWSN_GNSS;
    Type: Dataset
    Format: text/tab-separated-values, 6755 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
  • 7
  • 8
    Publication Date: 2012-10-21
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Print ISSN: 0277-3791
    Electronic ISSN: 1873-457X
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-01
    Print ISSN: 0277-3791
    Electronic ISSN: 1873-457X
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...