ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: Journal of Aircraft (ISSN 0021-8669); 28; 812-817
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: AIAA PAPER 92-3318
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-100431 , H-1470 , NAS 1.15:100431
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Results of the flight demonstration of the adaptive engine control system (ADECS), an integrated flight and propulsion control system, are reported. The ADECS system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated in accordance with the maneuver requirements, flight conditions, and engine information. As a result of EPR uptrimming, engine thrust has increased by as much as 10.5 percent, rate of climb has increased by 10 percent, and the time to climb from 10,000 to 40,000 ft has been reduced by 12.5 percent. Increases in acceleration of 9.3 and 13 percent have been obtained at intermediate and maximum power, respectively. No engine anomalies have been detected for EPR increases up to 12 percent.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 87-1847
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2003-210734 , H-2505 , NAS 1.15:210734 , AIAA Atmospheric Flight Mechanics Conference; Aug 05, 2002 - Aug 08, 2002; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TP-1998-206554 , H-2258 , NAS 1.15:206554 , Propulsion; Jul 13, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The performance and distortion levels of the right inlet of the F/A-18A High Alpha Research Vehicle were assessed during maneuvers with rapidly changing angle-of-attack at the NASA Dryden Flight Research Center, Edwards, California. The distortion levels were compared with those produced by current inlet-engine compatibility evaluation techniques. The objective of these analyses was to determine whether the results obtained for steady aerodynamic conditions were adequate to describe the inlet-generated distortion levels that occur during rapid aircraft maneuvers. The test data were obtained during 46 dynamic maneuvers at Mach numbers of 0.3 and 0.4. Levels of inlet recovery, peak dynamic circumferential distortion, and peak dynamic radial distortion of dynamic maneuvers for a General Electric F404-GE-400 turbofan engine were compared with estimations based on steady aerodynamic conditions. The comparisons were performed at equivalent angle-of-attack, angle-of-sideslip, and Mach number. Results showed no evidence of peak inlet distortion levels being elevated by dynamic maneuver conditions at high angle-of-attack compared with steady aerodynamic estimations. During sweeps into high angle-of-attack, the peak distortion levels of the dynamic maneuvers rarely rose to steady aerodynamic estimations. The dynamic maneuvers were shown to be effective at identifying conditions when discrete changes in inlet behavior occur.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-104327 , NAS 1.15:104327 , H-2146 , High Angle-of-Attack Technology; Sep 17, 1996 - Sep 19, 1996; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 deg, respectively.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: AIAA PAPER 88-2175 , AIAA Flight Test Conference; May 18, 1988 - May 20, 1988; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-4465 , H-1888 , NAS 1.15:4465 , AIAA PAPER 92-3318 , AIAA 28th Joint Propulsion Conference and Exhibit; Jul 06, 1992 - Jul 08, 1992; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: The F404-GE-400 engine powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the characteristics of inlet airflow during rapid aircraft maneuvers. A study of the degree of similarity between inlet data obtained during rapid aircraft maneuvers and inlet data obtained at steady aerodynamic attitudes was conducted at the maximum engine airflow of approximately 145 Ibm/sec using a computer model that was generated from inlet data obtained during steady aerodynamic maneuvers. Results show that rapid-maneuver inlet recoveries agreed very well with the recoveries obtained at equivalent stabilized angle-of-attack conditions. The peak dynamic circumferential distortion values obtained during rapid maneuvers agreed within 0.01 units of distortion over the 10 - 38 degree angle of attack range with the values obtained during steady aerodynamic maneuvers while similar agreement was found for the peak dynamic radial distortion values up to 29 degrees angle-of-attack. Exceedences of the rapid-maneuver peak dynamic circumferential distortion values relative to the peak distortion model values at steady attitudes occurred only at low or negative angles of attack and were inconsequential from an engine-stability assessment point of view. The results of this study validate the current industry practice of testing at steady aerodynamic conditions to characterize inlet recovery and peak dynamic distortion levels.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-1999-206587 , H-2371 , NAS 1.15:206587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...