ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-02
    Description: Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naive European amphibian populations, where it is currently causing biodiversity loss.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martel, A -- Blooi, M -- Adriaensen, C -- Van Rooij, P -- Beukema, W -- Fisher, M C -- Farrer, R A -- Schmidt, B R -- Tobler, U -- Goka, K -- Lips, K R -- Muletz, C -- Zamudio, K R -- Bosch, J -- Lotters, S -- Wombwell, E -- Garner, T W J -- Cunningham, A A -- Spitzen-van der Sluijs, A -- Salvidio, S -- Ducatelle, R -- Nishikawa, K -- Nguyen, T T -- Kolby, J E -- Van Bocxlaer, I -- Bossuyt, F -- Pasmans, F -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):630-1. doi: 10.1126/science.1258268.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. an.martel@ugent.be. ; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, Antwerp, Belgium. ; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos da Universidade do Porto, Instituto de Ciencias Agrarias de Vairao, Rua Padre Armando Quintas, Vairao, Portugal. ; Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK. ; Genome Sequencing and Analysis Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Koordinationsstelle fur amphibien- und reptilienschutz in der Schweiz (KARCH), Passage Maximilien-de-Meuron 6, 2000 Neuchatel, Switzerland. Institut fur Evolutionsbiologie und Umweltwissenschaften, Universitat Zurich. Winterthurerstrasse 190, 8057 Zurich, Switzerland. ; Invasive Alien Species Research Team, National Institute for Environment Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. ; Department of Biology, University of Maryland, College Park, MD 20742, USA. ; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. ; Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones cientificas (CSIC), Jose Gutierrez Abascal 2, 28006 Madrid, Spain. ; Biogeography Department, Trier University, 54286 Trier, Germany. ; Durrell Institute of Conservation and Ecology, University of Kent, Kent CT2 7NR, UK. Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. ; Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. ; Reptile, Amphibian and Fish Conservation the Netherlands (RAVON), Post Office Box 1413, 6501 BK Nijmegen, Netherlands. ; Department of Earth Science, Environmental and Life (Di.S.T.A.V.), University of Genova, Corso Europa 26, I-16132 Genova, Italy. ; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. ; James Cook University, One Health Research Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, Townsville, Queensland, Australia. ; Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359973" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Chytridiomycota ; Communicable Diseases, Emerging/microbiology/*veterinary ; *Endangered Species ; Mycoses/microbiology/*veterinary ; Phylogeny ; Urodela/classification/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth’s biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-30
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1984-08-01
    Print ISSN: 0020-1669
    Electronic ISSN: 1520-510X
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-03
    Description: In vertebrates, the relative proportion of the number of trunk and caudal vertebrae is an important determinant of body shape. While among amphibians frogs and toads show low variation in vertebrae numbers, in salamanders the numbers of trunk and caudal vertebrae vary widely, giving rise to phenotypes in the range from short-bodied and long-tailed to long-bodied and short-tailed. We analysed vertebral numbers in the family Salamandridae in a phylogenetic context and calculated the relationship between vertebral changes and changes in climate and other environmental parameters. A significant association was found between morphological change with precipitation and temperature. However, annual precipitation affected the two main groups of salamandrid salamanders differently, with trunk elongation in the terrestrial ‘true salamanders’ and tail elongation in the more aquatic ‘newts’. A - male biased - sexual dimorphism was only observed in Lissotriton vulgaris vulgaris in the number of trunk vertebrae and in Ommatotriton ophryticus and Lissotriton species for the number of caudal vertebrae. Our data indicated that the number of trunk and caudal vertebrae are highly evolvable traits with frequent evolutionary reversals. In some groups (e.g. Cynops, Lyciasalamandra, Neurergus and the Laotriton-Pachytriton-Paramesotriton clade) the number of trunk vertebrae is stable, while in many groups it is subject to change (e.g. Tylototriton). This latter, species-rich genus appears to be an excellent group to further test effects of the environment on body shape.
    Keywords: ancestral character states ; body shape ; climatic niche ; comparative method ; phylogeny ; vertebral column ; 42.82
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-12
    Description: In vertebrates, the relative proportion of the number of trunk and caudal vertebrae is an important determinant of body shape. While among amphibians frogs and toads show low variation in vertebrae numbers, in salamanders the numbers of trunk and caudal vertebrae vary widely, giving rise to phenotypes in the range from short-bodied and long-tailed to long-bodied and short-tailed. We analysed vertebral numbers in the family Salamandridae in a phylogenetic context and calculated the relationship between vertebral changes and changes in climate and other environmental parameters. A significant association was found between morphological change with precipitation and temperature. However, annual precipitation affected the two main groups of salamandrid salamanders differently, with trunk elongation in the terrestrial \xe2\x80\x98true salamanders\xe2\x80\x99 and tail elongation in the more aquatic \xe2\x80\x98newts\xe2\x80\x99. A - male biased - sexual dimorphism was only observed in Lissotriton vulgaris vulgaris in the number of trunk vertebrae and in Ommatotriton ophryticus and Lissotriton species for the number of caudal vertebrae. Our data indicated that the number of trunk and caudal vertebrae are highly evolvable traits with frequent evolutionary reversals. In some groups (e.g. Cynops, Lyciasalamandra, Neurergus and the Laotriton-Pachytriton-Paramesotriton clade) the number of trunk vertebrae is stable, while in many groups it is subject to change (e.g. Tylototriton). This latter, species-rich genus appears to be an excellent group to further test effects of the environment on body shape.
    Keywords: ancestral character states ; body shape ; climatic niche ; comparative method ; phylogeny ; vertebral column
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...