ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2021-04-23
    Description: Meteor Cruise M121 was dedicated to the investigation of the distribution of dissolved and particulate trace metals and their isotopic compositions (TEIs) in the full water column of the Angola Basin and the northernmost Cape Basin. A key aim was to determine the driving factors for the observed distributions, which includes the main external inputs, as well as internal cycling and ocean circulation. The research program of the cruise is official part of the international GEOTRACES program (www.geotraces.org) and cruise M121 corresponds to GEOTRACES cruise GA11. Subject of the cruise was the trace metal clean and contamination-free sampling of waters and particulates for subsequent analyses of the TEIs in the home laboratories of the national and international participants. Besides a standard rosette for the less contaminant prone metals, trace metal clean sampling was realized by using for the first time a new dedicated, coated trace metal clean rosette equipped with Teflon-coated GO-FLO bottles operated via a plastic coated cable from a mobile winch of GEOMAR Kiel. The particulate samples were collected under trace metal clean conditions using established in-situ pump systems operated from Meteor’s Aramid line. The cruise track led from Walvis Bay northwards along the West African margin until 3°S, then turned west until the Zero Meridian, which was followed southwards until 30°S. Then the cruise track turned east again until the Namibian margin was reached and then completed the near shore track northwards until Walvis Bay. The track crossed areas of major external inputs including dust from the Namib Desert and exchange with the west African continental margin and with the oxygen depleted shelf sediments of the Benguela upwelling, as well as with the plume of the Congo outflow, that was followed from its mouth northwards. Our investigations of internal cycling included the extremely high productivity associated with the Benguela Upwelling and the elevated productivity of the Congo plume contrasting with the extremely oligotrophic waters of the southeastern Atlantic Gyre. The links between TEI biogeochemistry and the nitrogen cycle forms an important aspect of our study. The major water masses contributing the Atlantic Meridional Overturning Circulation were sampled in order to investigate if particular TEI signatures are suitable as water mass tracers, in particular near the ocean margin and in the restricted deep Angola Basin. A total of 51 full water column stations were sampled for the different dissolved TEIs, which were in most cases accompanied by sampling for particulates and radium isotopes using the in-situ pumps. In addition, surface waters were continuously sampled under trace metal clean conditions using a towed fish and aerosol and rain samples were continuously collected.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • Frequent sediment resuspension may have buffered D-Fe released from shelf sediments. • 228Ra was used to estimate trace element fluxes from the Chukchi shelf sediments. • The estimated sediment 228Ra flux ranks among the highest reported globally. • About 10–25% of the Chukchi shelf sediment Fe flux is exported to the Arctic Ocean. The Chukchi Sea is a primary site for shelf-ocean exchange in the Arctic region and modifies Pacific-sourced water masses as they transit via the Bering Strait into the Arctic Ocean. The aim of this study was to use radium and trace metal distributions to improve our understanding of biogeochemical cycles in the Bering and Chukchi Seas, and evaluate their potential response to future changes in the Arctic. We investigated the distributions of dissolved and total dissolvable trace metals (Cd, Fe, Ni, Cu, Zn, Mn, Co, and Pb) in the Bering and Chukchi Seas during spring. In addition, the long-lived radium isotopes (226Ra and 228Ra) were measured as tracers of benthic trace metal inputs. Trace metal concentrations, especially Fe and Mn, were highly elevated in Chukchi shelf waters compared with the open Arctic Ocean and Bering Strait. Trace metal, nutrient, and Ra patterns suggested that Fe, Mn, and Co concentrations were predominantly controlled by reductive benthic inputs, whereas the other trace metals were influenced by biological uptake and release processes. We propose that Fe, Mn, and Co in the Chukchi Sea are supplied from shelf sediments during winter overturning, and we combine the 228Ra fluxes with the distributions of Fe, Mn, and Co to provide a first estimate of their benthic fluxes in the region. The average benthic flux of 228Ra was 1.49 × 108 atoms m−2 d−1, which is among the highest rates reported globally. Estimated dissolved Fe (D-Fe) flux from the sediments was 2.5 μmol m−2 d−1, whereas D-Mn and D-Co fluxes were 8.0 μmol m−2 d−1 and 0.2 μmol m−2 d−1, respectively. The off-shelf transport of D-Fe to the Arctic Ocean is estimated to be about 10–25% of the benthic Fe flux, with the remainder retained on the shelf due to scavenging and/or phytoplankton uptake. Our results highlight the importance of the Chukchi Sea as a major source of the micro-nutrients to the Arctic Ocean, thereby supporting primary production. Long-term changes in factors that affect cross-shelf mixing, such as the observed reduction in ice cover, may therefore enhance shelf nutrient inputs and primary productivity in the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 200 pp
    Publication Date: 2022-01-31
    Description: Trace elements (TEs) play crucial roles in regulating ocean processes including marine biogeochemical cycles, and are therefore vital to support marine life. Understanding the biogeochemical cycling of TEs requires knowledge of their sources/ sinks and transport in the oceans. Radium isotopes are suitable tools to study inputs of elements from the continental margins, as they are produced by the decay of thorium isotopes in sediments, and are soluble in seawater. Therefore, in this Ph.D. thesis, I used Ra isotopes to determine boundary TE fluxes from two diverse environments that constrain the major TE sources, including shelf sediments in an Arctic shelf region and in an eastern boundary system off the western African coast, as well as rivers such as the River Congo. First, the distributions of the dissolved and total dissolvable TEs (Cd, Fe, Ni, Cu, Zn, Pb, Mn, and Co) were investigated in the Chukchi Sea and 228Ra isotope was applied as tracer of benthic TE inputs. The results show that elevated benthic TE inputs on the Chukchi shelf provided suitable conditions for phytoplankton blooms. The 228Ra activities in spring appear to be 2-fold higher than in summer, which was a surprising observation and requires further investigation. Next, 228Ra was used to investigate the influence of the Congo River on surface ocean TE concentrations in the South Atlantic Ocean. The results show that the Congo River plume constitutes a large and unexpected input of TEs (Fe, Mn, and Co) into the South Atlantic. Finally, Ra isotopes were used to investigate a number of key ocean boundary processes in the Southeast Atlantic Ocean. Upwelling in the Benguela region is visible in the Ra distributions, and elevated Ra isotopes, Fe (II) and Si concentrations were observed in the Benguela oxygen minimum zone, possibly due to inputs from the reducing shelf sediments, or submarine groundwater discharge along the Namibian shelf.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-12
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-12-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The correlation between concentrations of dissolved barium (dBa) and silicon (dSi) in the modern ocean supports the use of Ba as a paleoceanographic proxy. However, the mechanisms behind their linkage and the exact processes controlling oceanic Ba cycling remain enigmatic. To discern the extent to which this association arises from biogeochemical processes versus physical mixing, we examine the behavior of Ba and Si at the Congo River-dominated Southeast Atlantic margin where active biological processes and large boundary inputs override the large-scale ocean circulation. Here we present the first combined measurements of dissolved stable Ba (δ138Ba) and Si (δ30Si) isotopes as well as Ba and Si fluxes estimated based on 228Ra from the Congo River mouth to the northern Angola Basin. In the surface waters, river-borne particle desorption or dissolution and shelf inputs lead to non-conservative additions of both dBa and dSi to the Congo-shelf-zone, with the Ba flux increasing more strongly than that of Si across the shelf. In the epipelagic and mesopelagic layers, Ba and Si are decoupled likely due to different depths of in situ barite precipitation and biogenic silica production. In the deep waters of the northern Angola Basin, we observe large enrichment of dBa, likely originating from high benthic inputs from the Congo deep-sea fan sediments. Our results reveal different mechanisms controlling the biogeochemical cycling of Ba and Si and highlight a strong margin influence on marine Ba cycling. Their close association across the global ocean must therefore mainly be a consequence of the large-scale ocean circulation. Key Points Stronger enrichment of dissolved barium (dBa) than silicon (dSi) observed in the shelf-zone of the Congo plume Diatom silica production has negligible effect on dissolved Ba isotopic compositions in large river plumes Strong dBa enrichment (up to 24 nM) in the deep water of the northern Angola Basin likely originates from high benthic inputs
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Key Points: - Bio-essential element concentrations in surface waters decreased from spring to summer with removal ratios reflecting biological uptake - Effects of volcanic inputs from Eyjafjallajökull in spring 2010 were pronounced for Al, Mn and Zn but returned to typical levels in summer - Deep winter convection dominated trace element supply to surface waters with minor contributions from atmospheric and diffusive mixing We present dissolved and total dissolvable trace elements for spring and summer cruises in 2010 in the high latitude North Atlantic. Surface and full depth data are provided for Al, Cd, Co, Cu, Mn, Ni, Pb, Zn in the Iceland and Irminger Basins, and consequences of biological uptake and inputs by the spring Eyjafjallajökull volcanic eruption are assessed. Ash from Eyjafjallajökull resulted in pronounced increases in Al, Mn and Zn in surface waters in close proximity to Iceland during the eruption, whilst 3 months later during the summer cruise levels had returned to more typical values for the region. The apparent seasonal removal ratios of surface trace elements were consistent with biological export. Assessment of supply of trace elements to the surface mixed layer for the region, excluding volcanic inputs, indicated that deep winter mixing was the dominant source, with diffusive mixing being a minor source (between 13.5% (dissolved Cd (DCd)) and ‐2.43% (DZn) of deep winter flux), and atmospheric inputs being an important source only for DAl and DZn (DAl up to 42% and DZn up to 4.2% of deep winter+diffusive fluxes) and typically less than 1% for the other elements. Elemental supply ratios to the surface mixed layer through convection were comparable to apparent removal ratios we calculated between spring and summer. Given that deep mixing dominated nutrient and trace element supply to surface waters, predicted increases in water column stratification in this region may reduce supply, with potential consequences for primary production and the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...