ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Scaling arguments are presented to quantify the widely used diapycnal (irreversible) mixing coefficient 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 in stratified flows as a function of the turbulent Froude number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Here, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the buoyancy frequency, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the turbulent kinetic energy, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the rate of dissipation of turbulent kinetic energy and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the rate of dissipation of turbulent potential energy. We show that for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. These scaling results are tested using high-resolution direct numerical simulation (DNS) data from three different studies and are found to hold reasonably well across a wide range of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 that encompasses weakly stratified to strongly stratified flow conditions. Given that the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 cannot be readily computed from direct field measurements, we propose a practical approach that can be used to infer the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline15.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 from readily measurable quantities in the field. Scaling analyses show that 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline16.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline17.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline18.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline19.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline20.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline21.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline22.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the Thorpe length scale and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190320133914837-0850:S0022112019001423:S0022112019001423_inline23.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the Ozmidov length scale. These formulations are also tested with DNS data to highlight their validity. These novel findings could prove to be a significant breakthrough not only in providing a unifying (and practically useful) parameterization for the mixing efficiency in stably stratified turbulence but also for inferring the dynamic state of turbulence in geophysical flows.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-13
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-02
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-18
    Print ISSN: 1567-7419
    Electronic ISSN: 1573-1510
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-06
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-01
    Description: In this study, Reynolds-averaged Navier–Stokes (RANS) simulations are performed using the k-ε and k-ω shear stress transport (SST) turbulence closure schemes to investigate the interactions of horizontal-axis wind turbine (HAWT) models in the neutrally stratified atmospheric boundary layer (ABL). A comparative study of actuator disk, actuator line, and full rotor models of the National Renewable Energy Laboratory (NREL) 5 MW reference turbine is presented. The open-source computational fluid dynamics (CFD) code openfoam 2.1.0 and the commercial software ansysfluent 13.0 are used for simulations. Single turbine models are analyzed for turbulent structures and wake resolution in the downstream region. To investigate the influence of the incident wind field on very large turbine blades, a high-resolution full rotor simulation is carried out for a single turbine to determine blade pressure distributions. Finally, simulations are performed for two inline turbines spaced 5 diameters (5D) apart. The research presented in this study provides an intercomparison of three dominant HAWT models operating at rated conditions in a neutral ABL using an RANS framework. Furthermore, the pressure distributions of the highly resolved full rotor model (FRM) will be useful for future aeroelastic structural analysis of anisotropic composite blade materials.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2006-09-15
    Description: Direct numerical simulations are used to study mixing and dispersion in decaying stably stratified turbulence from a Lagrangian perspective. The change in density of fluid particles owing to small-scale mixing is extracted from the simulations to provide insight into the mixing process. These changes are driven by temporally and spatially intermittent events that are strongly suppressed as the stratification increases and overturning motions disappear. This occurs for times Nt 〉 2π i.e. after one buoyancy period, where N is the buoyancy frequency. The role of small-scale mixing processes in the density (or buoyancy) flux is analysed. After an initial transient, we find that diapycnal displacements due to mixing dominate the dispersion of fluid particles, even in weak stratification. The relationship between the diapycnal diffusivity and vertical dispersion coefficients is found to be strongly dependent on stratification. Models for the mixing following fluid particles are investigated. The time scale for the density changes due to small-scale mixing is shown to be approximately independent of N and instead remains linked to the energy decay time scale which is relatively insensitive to stratification. There are large changes in the structure of these flows as they evolve under the influence of buoyancy forces. We investigate these changes and their relationship to mixing. We find that strong mixing events are closely linked to the presence of overturning regions in the flow, and that they occur close to (but not within) these regions. The results reported here have implications for the development of improved models of diffusion in stably stratified turbulence. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-04-19
    Description: High-resolution two- and three-dimensional numerical simulations are performed of first-mode internal gravity waves interacting with a shelf break in a linearly stratified fluid. The interaction of nonlinear incident waves with the shelf break results in the formation of upslope-surging vortex cores of dense fluid (referred to here as internal boluses) that propagate onto the shelf. This paper primarily focuses on understanding the dynamics of the interaction process with particular emphasis on the formation, structure and propagation of internal boluses onshelf. A possible mechanism is identified for the excitation of vortex cores that are lifted over the shelf break, from where (from the simplest viewpoint) they essentially propagate as gravity currents into a linearly stratified ambient fluid. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...