ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Call number: 9783319256436 (e-book)
    Description / Table of Contents: This book is a useful guide for researchers in ecology and earth science interested in the use of accelerator mass spectrometry technology. The development of research in radiocarbon measurements offers an opportunity to address the human impact on global carbon cycling and climate change. Presenting radiocarbon theory, history, applications, and analytical techniques in one volume builds a broad outline of the field of radiocarbon and its emergent role in defining changes in the global carbon cycle and links to climate change. Each chapter presents both classic and cutting-edge studies from different disciplines involving radiocarbon and carbon cycling. The book also includes a chapter on the history and discovery of radiocarbon, and advances in radiocarbon measurement techniques and radiocarbon theory. Understanding human alteration of the global carbon cycle and the link between atmospheric carbon dioxide levels and climate remains one of the foremost environmental problems at the interface of ecology and earth system science. Many people are familiar with the terms ‘global warming’ and ‘climate change’, but fewer are able to articulate the science that support these hypotheses. This book addresses general questions such as: what is the link between the carbon cycle and climate change; what is the current evidence for the fate of carbon dioxide added by human activities to the atmosphere, and what has caused past changes in atmospheric carbon dioxide? How can the radiocarbon and stable isotopes of carbon combined with other tools be used for quantifying the human impact on the global carbon cycle?
    Type of Medium: 12
    Pages: 1 Online-Ressource (VII, 315 Seiten) , Illustrationen, Diagramme
    ISBN: 9783319256436 , 978-3-319-25643-6
    Language: English
    Note: Contents 1 Radiocarbon and the Global Carbon Cycle / E.A.G. Schuur, S.E. Trumbore, E.R.M. Druffel, J.R. Southon, A. Steinhof, R.E. Taylor and J.C. Turnbull 2 Radiocarbon Dating: Development of a Nobel Method / R.E. Taylor 3 Radiocarbon Nomenclature, Theory, Models, and Interpretation: Measuring Age, Determining Cycling Rates, and Tracing Source Pools / S.E. Trumbore, C.A. Sierra and C.E. Hicks Pries 4 Radiocarbon in the Atmosphere / J.C. Turnbull, H. Graven and N.Y. Krakauer 5 Radiocarbon in the Oceans / E.R.M. Druffel, S.R. Beaupré and L.A. Ziolkowski 6 Radiocarbon in Terrestrial Systems / E.A.G. Schuur, M.S. Carbone, C.E. Hicks Pries, F.M. Hopkins and S.M. Natali 7 Paleoclimatology / J.R. Southon, R. De Pol-Holz and E.R.M. Druffel 8 Accelerator Mass Spectrometry of Radiocarbon / Axel Steinhof 9 Preparation for Radiocarbon Analysis / S.E. Trumbore, X. Xu, G.M. Santos, C.I. Czimczik, S.R. Beaupré, M.A. Pack, F.M. Hopkins, A. Stills, M. Lupascu and L. Ziolkowski
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-23
    Description: Managed grasslands have the potential to store carbon (C) and partially mitigate climate change. However, it remains difficult to predict potential C storage under a given soil or management practice. To study C storage dynamics due to long-term (1952–2009) phosphorus (P) fertilizer and irrigation treatments in New Zealand grasslands, we measured radiocarbon (〈sup〉14〈/sup〉C) in archived soil along with observed changes in C stocks to constrain a compartmental soil model. Productivity increases from P application and irrigation in these trials resulted in very similar C accumulation rates between 1959 and 2009. The ∆〈sup〉14〈/sup〉C changes over the same time period were similar in plots that were both irrigated and fertilized, and only differed in a non-irrigated fertilized plot. Model results indicated that decomposition rates of fast cycling C (0.1 to 0.2 year〈sup〉−1〈/sup〉) increased to nearly offset increases in inputs. With increasing P fertilization, decomposition rates also increased in the slow pool (0.005 to 0.008 year〈sup〉−1〈/sup〉). Our findings show sustained, significant (i.e. greater than 4 per mille) increases in C stocks regardless of treatment or inputs. As the majority of fresh inputs remain in the soil for less than 10 years, these long term increases reflect dynamics of the slow pool. Additionally, frequent irrigation was associated with reduced stocks and increased decomposition of fresh plant material. Rates of C gain and decay highlight trade-offs between productivity, nutrient availability, and soil C sequestration as a climate change mitigation strategy.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: GNS Science
    Description: Max Planck Institute for Biogeochemistry (2)
    Description: https://github.com/ShaneStoner/Winchmore14C
    Keywords: ddc:631.4 ; Radiocarbon ; Soil carbon ; Soil modeling ; Carbon sequestration ; Transit time ; SoilR
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Measurements of the organic carbon inventory, its stable isotopic composition and radiocarbon content were used to deduce vegetation history from two soil profiles in arboreal and grassy savanna ecotones in the Brazilian Pantanal. The Pantanal is a large floodplain area with grass-dominated lowlands subject to seasonal flooding, and arboreal savanna uplands which are only rarely flooded. Organic carbon inventories were lower in the grassy savanna site than in the upland arboreal savanna site, with carbon decreasing exponentially with depth from the surface in both profiles. Changes in 13C of soil organic matter (SOM) with depth differed markedly between the two sites. Differences in surface SOM 13C values reflect the change from C3 to C4 plants between the sites, as confirmed by measurements of 13C of vegetation and the soil surface along a transect between the upland closed-canopy forest and lowland grassy savanna. Changes of 13C in SOM with depth at both sites are larger than the 3–4 per mil increases expected from fractionation associated with organic matter decomposition. We interpret these as recording past changes in the relative abundance of C3 and C4 plants at these sites. Mass balances with 14C and 13C suggest that past vegetational changes from C3 to C4 plants in the grassy savanna, and in the deeper part of the arboreal savanna, occurred between 4600 and 11 400 BP, when major climatic changes were also observed in several places of the South American Continent. The change from C4 to C3, observed only in the upper part of the arboreal savanna, was much more recent (1400 BP), and was probably caused by a local change in the flooding regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Despite the importance of Arctic and boreal regions in the present carbon cycle, estimates of annual high-latitude carbon fluxes vary in sign and magnitude. Without accurate estimates of current carbon fluxes from Arctic and boreal ecosystems, predicting the response of these systems to global change is daunting. A number of factors control carbon turnover in high-latitude soils, but because they are unique to northern systems, they are mostly ignored by biogeochemical models used to predict the response of these systems to global change. Here, we review those factors. First, many northern systems are dominated by mosses, whose extremely slow decomposition is not predicted by commonly used indices of litter quality. Second, cold temperature, permafrost, waterlogging, and substrate quality interact to stabilize soil organic matter, but the relative importance of these factors, and how they respond to climate change, is unknown. Third, recent evidence suggests that biological activity occurring over winter can contribute significantly to annual soil carbon fluxes. However, the controls over this winter activity remain poorly understood. Finally, processes at the landscape scale, such as fire, permafrost dynamics, and drainage, control regional carbon fluxes, complicating the extrapolation of site-level measurements to regional scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The future flora of Amazonia will include significant areas of secondary forest as degraded pastures are abandoned and secondary succession proceeds. The rate at which secondary forests regain carbon (C) stocks and re-establish biogeochemical cycles that resemble those of primary forests will influence the biogeochemistry of the region. Most studies have focused on the effects of deforestation on biogeochemical cycles. In this study, we present data on the recuperation of carbon stocks and carbon fluxes within a secondary forest of the eastern Amazon, and we compare these measurements to those for primary forest, degraded pasture, and productive pasture. Along a transect from a 23-y-old degraded pasture, through a 7-y-old secondary forest, through a 16-year-old secondary forest, and to a primary forest, the δ13C values of soil organic matter (SOM) in the top 10 cm of soil were – 21.0, – 26.5, – 27.4, and – 27.9‰, respectively, indicating that the isotopic signature of SOM from C3 forest plants was rapidly re-established. The degraded pasture also had significant inputs of C from C3 plants. Radiocarbon data indicated that most of the C in the top 10 cm of soil had been fixed by plants during the last 30 years. Differences in soil C inventory among land use types were small compared to uncertainties in their measurement. Root inputs were nearly identical in primary and secondary forests, and litterfall in the secondary forest was 88% of the litterfall rate of the primary forest. In contrast, the secondary forest had only 17% of the above ground biomass. Because of rapid cycling rates of soil C and rapid recovery of C fluxes to and from the soil, the below ground C cycle in this secondary forest was nearly identical with those of the unaltered primary forest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 410 (2001), S. 429-429 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] With fossil-fuel combustion and land-use activities threatening to double atmospheric carbon dioxide this century, maintaining large forests as carbon reservoirs becomes an additional conservation incentive. We have developed a stochastic-empirical model that simulates forest-carbon cycling and now ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 408 (2000), S. 789-790 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Soils store two or three times more carbon than exists in the atmosphere as CO2, and it is thought that the temperature sensitivity of decomposing organic matter in soil partly determines how much carbon will be transferred to the atmosphere as a result of global warming. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 389 (1997), S. 170-173 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A large source of uncertainty in present understanding of the global carbon cycle is the distribution and dynamics of the soil organic carbon reservoir. Most of the organic carbon in soils is degraded to inorganic forms slowly, on timescales from centuries to millennia. Soil minerals are known ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 376 (1995), S. 472-473 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - Fisher et al1 draw much-needed attention to the important role of deep tropical soils and tropical land use in the global carbon cycle. They show that African forage grasses planted in South American cattle pastures have prolific root systems extending below the plough layer. They ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Cariaco basin (10° 40' N, 65° W) is an anoxic marine basin located within the trade-wind belt off the northern coast of Venezuela (Fig. 1). The climate of the Cariaco basin region has a large seasonal signal, controlled by the annual north-south migration of the Intertropical ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...