ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ILP/M 06.0145
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: 350 S. : Ill., graph. Darst.
    Series Statement: Publication of the International Lithosphere Programme 343
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 12 (2000), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In contrast to previously published models for the area, the seismic reflection Moho is essentially flat beneath the NE German Basin along the DEKORP deep seismic profile Basin’96. This raises the question, whether the present structure of the crust and flat Moho reflect the initial formation of the basin or modification by more recent processes. A 2D flexural model, developed for a thin elastic plate, is presented together with lithospheric strength profiles calculated along the BASIN 9601 reflection seismic line. The analysis shows a southward decrease of lithospheric strength below the Basin, with a lithospheric decoupling between the crust and the mantle. The modelling supports the hypothesis that the present Moho topography is caused by flexural buckling which caused subsidence of the NE German Basin during the Upper Cretaceous–Early Cenozoic inversion event. This suggests that the basin is in isostatic disequilibrium, and that compressive stresses are required to keep the present basin geometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 68 (1991), S. 285-293 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 34 (1986), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The normal incidence seismic wavefields in a horizontally layered model of the earth have a well-known matrix description if the earth model has been transformed into a layer stack built up by thin layers, all of equal traveltime. To compute a Synthetic Vertical Seismic Profile (SVSP) the wavefields are iterated through the whole layer stack by means of the matrix description, either expressed in the time domain or in the frequency domain. In conventional methods a single layer is added to a resulting stack of layers at each recursion step. However in the present algorithm, a whole layer stack is added to another layer stack at each recursion step. Improvement in computing time obtained by doing so is approximately linearly dependent on the typical number of layers between receivers. This makes the method very suitable for detailed modeling wherever high resolution of the model is desired.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-08
    Description: The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) was undertaken to provide a snapshot of lithospheric break-up above a mantle upwelling at the transition between continental and oceanic rifting. The focus of the project was the northern Main Ethiopian Rift (NMER) cutting across the uplifted Ethiopian plateau comprising the Eocene-Oligocene Afar flood basalt province. A major component of EAGLE was a controlled-source seismic survey involving one rift-axial and one cross-rift c. 400 km profile, and a c. 100 km diameter 2D array to provide a 3D subsurface image beneath the profiles' intersection. The resulting seismic data are interpreted in terms of a crustal and sub-Moho P-wave seismic velocity model. We identify four main results: (1) the velocity within the mid- and upper crust varies from 6.1 km s1 beneath the rift flanks to 6.6 km s1 beneath overlying Quaternary axial magmatic segments, interpreted in terms of the presence of cooled gabbroic bodies arranged en echelon along the axis of the rift; (2) the existence of a high-velocity body (Vp 7.4 km s1) in the lower crust beneath the northwestern rift flank, interpreted in terms of about 15 km-thick, mafic under-plated/intruded layer at the base of the crust (we suggest this was emplaced during the eruption of Oligocene flood basalts and modified by more recent mafic melt during rifting); (3) the variation in crustal thickness along the NMER axis from c. 40 km in the SW to c. 26 km in the NE beneath Afar. This variation is interpreted in terms of the transition from near-continental rifting in the south to a crust in the north that could be almost entirely composed of mantle-derived mafic melt; and (4) the presence of a possibly continuous mantle reflector at a depth of about 1525 km below the base of the crust beneath both linear profiles. We suggest this results from a compositional or structural boundary, its depth apparently correlated with the amount of extension.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005
    Keywords: CC 1/3 ; Coordinating Committee ; TOPO-EUROPE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-01-01
    Description: Seismic reflection data from the Danish North Sea are interpreted to map the structure of the Palaeozoic basement in the area of the MONA LISA deep seismic lines. Based on a characteristic near-basement reflection, the upper crystalline crust of Baltica of offshore Denmark is traced to the south into the southern Horn-Graben, and to the west to the eastern shoulder of the Central Graben. A two-way-traveltime map of the near-basement horizon and several interpreted seismic sections reveal that three main tectonic events influenced the topography of the basement: (1) a compressional event which could be Caledonian in age; (2) a Palaeozoic extensional event postdating the compressional deformation and expressed in a system of WSW-ESE to W-E striking Palaeozoic half-grabens; and (3) the Permo-Triassic rifting that led to the formation of NNW-SSE to NNE-SSW trending Mesozoic faults of the Horn Graben and the Central Graben which are oriented sub-perpendicular to the Palaeozoic system. Compressive deformation is localized in a narrow zone around and south of the hitherto interpreted Caledonian Deformation Front and foreland deformation on Baltica is suggested as its origin. The seismic image of the Palaeozoic halfgrabens indicates that the East North Sea High is an inverted Palaeozoic rift which subsequently was cut by younger Late Palaeozoic to Mesozoic rifts of the Horn and Central Grabens. The timing of the first extensional phase remains speculative, but it predates the Rotliegend unconformity. Some of the older Palaeozoic normal faults may have been reactivated as transfer zones between the different graben segments during the Permo-Mesozoic extension.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2015-12-05
    Description: We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust from the observed satellite gravity field data (GOCE Direct release 3). Thus calculated residual mantle gravity anomalies are caused mainly by a heterogeneous density distribution in the upper mantle. Given a relatively small range of expected compositional density variations in the lithospheric mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic V P velocity–density conversion for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average V P velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible uncertainties by applying different velocity-to-density conversions and by introducing variations into the crustal structure which correspond to typical resolution of high-quality and low-quality seismic models. We apply our analysis to Siberia (the West Siberian Basin and the Siberian Craton) for which a new regional seismic crustal model, SibCrust, has recently become available. For the same region, we also compute upper-mantle gravity and density anomalies based on three global crustal models (CRUST 5.1, CRUST 2.0 and CRUST 1.0) and compare the results based on four different crustal models. A large uncertainty in the V P -to-density conversion may result in the uncertainty in lithospheric mantle density anomalies of ca. 0.02–0.03 g cm –3 (i.e. 0.5–1 per cent, which is comparable to compositional density anomalies expected for continental lithosphere mantle). Similar values of uncertainties may be caused by a 0.2 km s –1 error in average crustal V P velocities or by a 2 km uncertainty in the Moho depth. One of the largest uncertainties is caused by errors in thickness of the sedimentary layer, and a 2 km error leads to ca. 0.03 g cm –3 error in lithospheric mantle densities. Large deviations (locally ±10 km) of the Moho depth in global crustal models (CRUST 5.1, CRUST2.0 and CRUST1.0) from the high-resolution regional seismic model of the crust, SibCrust, may produce artefact residual mantle gravity anomalies of up to ±150 mGal locally, caused by large errors in crustal gravity corrections. These errors in gravity anomalies produce up to ca. 0.04 g cm –3 ( ca. 1.2 per cent) errors in density of the lithospheric mantle, which may well correspond to the amplitude of real density anomalies in the mantle. Our results demonstrate that gravity modelling alone cannot reliably constrain the crustal structure, including the Moho depth and thickness of sediments.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-05
    Description: The DOBRE-2 wide-angle reflection and refraction profile was acquired in June 2007 as a direct, southwestwards prolongation of the 1999 DOBREfraction'99 that crossed the Donbas Foldbelt in eastern Ukraine. It crosses the Azov Massif of the East European Craton, the Azov Sea, the Kerch Peninsula (the easternmost part of Crimea) and the northern East Black Sea Basin, thus traversing the entire Crimea–Caucasus compressional zone centred on the Kerch Peninsula. The DOBRE-2 profile recorded a mix of onshore explosive sources as well as airguns at sea. A variety of single-component recorders were used on land and ocean bottom instruments were deployed offshore and recovered by ship. The DOBRE-2 datasets were degraded by a lack of shot-point reversal at the southwestern terminus and by some poor signal registration elsewhere, in particular in the Black Sea. Nevertheless, they allowed a robust velocity model of the upper crust to be constructed along the entire profile as well as through the entire crust beneath the Azov Massif. A less well constrained model was constructed for much of the crust beneath the Azov Sea and the Kerch Peninsula. The results showed that there is a significant change in the upper crustal lithology in the northern Azov Sea, expressed in the near surface as the Main Azov Fault; this boundary can be taken as the boundary between the East European Craton and the Scythian Platform. The upper crustal rocks of the Scythian Platform in this area probably consist of metasedimentary rocks. A narrow unit as shallow as about 5 km and characterized by velocities typical of the crystalline basement bounds the metasedimentary succession on its southern margin and also marks the northern margin of the northern foredeep and the underlying successions of the Crimea–Caucasus compressional zone in the southern part of the Azov Sea. A broader and somewhat deeper basement unit (about 11 km) with an antiformal shape lies beneath the northern East Black Sea Basin and forms the southern margin of the Crimea–Caucasus compressional zone. The depth of the underlying Moho discontinuity increases from 40 km beneath the Azov Massif to 47 km beneath the Crimea–Caucasus compressional zone.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...