ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 134 (1979), S. 119-130 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Comparative measurements have been made of the transepidermal voltage recorded between the haemolymph space and the outer surface of the cuticle (a) at the site of sensilla and (b) at epidermal sites free of sensilla for representatives of various orders of insects and for terrestrial species of Crustacea and Arachnidae. 1. The transepidermal voltage at the site of sensilla has been found between 20 and 80 mV, with the cuticular side being positive, in contrast to about 0 mV at epidermal regions free of sensilla (Donnan-type voltages within the cuticle excluded by sufficiently high electrolyte concentrations). a. The locally increased voltage is present at sensilla of all groups of hemi- and holometabolous insects and also of a representative of Crustacea (wood-louseArmadillidium) tested, however, not of spiders. b. The locally increased voltage is present at all insect sensilla for all modalities of adequate stimuli tested (Table 1). 2. Anoxia or cyanide reduce the local voltage at sensilla to the voltage found remote from sensilla. During anoxia the main voltage component at insect sensilla decays within 1 or a few minutes; it is re-established within some 10s following resupply of O2 after some minutes of anoxia. A smaller component at insect sensilla and the total voltage at isopod sensilla decays only irreversibly within 1/2 to 1 h of anoxia. 3. The amplitude of the acutely O2-dependent voltage is strongly reduced during a few days before ecdysis (molting). On the basis of the subsequent paper (Küppers and Thurm, 1979) the acutely O2-dependent voltage at insect sensilla is interpreted as reflecting local electrogenic ion transport activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 142 (1981), S. 237-249 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The effect of transepithelial voltage on the generation of nervous impulses in an epithelial mechanoreceptor cell has been studied in the tibial hair sensilla of the cricketAcheta. Other studies have demonstrated sensilla to be a part of a ‘tight’ epithelium. A natural transepithelial voltage (TEV) of about 20 mV exists across the epithelium studied (outside positive). 1. In the mechanically unstimulated state, both increase and decrease of TEV elicits repetitive nerve impulses. Their time course is diphasic in transepithelial recordings. During positive polarization the temporal order of impulse phases is the same as for mechanically induced impulses, whereas it is inverted during negative polarization. Following application of Tretrodotoxin (TTX) at the apical side, the regularly subsequent (negative) impulse phase is abolished and negative polarization becomes ineffective in generating impulses. 2. Adequate mechanical stimulation decreases increment sensitivity of impulse generation for most transepithelial voltages (impulse frequency incrementΔF/ΔTEV). Following application of TTX, mechanically induced impulse frequency is lowered by decreased or negative TEV; the increment sensitivity-ΔF/-ΔTEV of this influence of TEV is increased by increasing the mechanical stimulus strength. In contrast, little change ofΔF/ΔTEV is caused by TTX in the domain of increased positive TEV with respect to the effect of mechanical stimuli. 3. Mechanical sensitivity of afferent spike frequency in this receptor is increased by an increase of TEV only for small mechanical stimuli; negative TEV diminishes mechanical sensitivity in general. This dependence of sensitivity on TEV cannot be generalized for comparable sensilla. 4. We conclude: A transepithelial current traverses the sensory cell via its apical dendritic membrane (the membrane of the ciliary outer segment mainly) and it leaves the cell at the basal side of the epithelium via the membrane of the basal dendritic region (ciliary inner segment). The current enters the cell via a conductance which is increased by adequate mechanical stimuli and via a conductance which is considerably high in the mechanically unstimulated state. In order to explain the complex effects of combined mechanical and electrical stimulation, we suggest that some apical conductance is controlled by the membrane voltage as a rectifying K+-conductance is. Both apical and basal membrane areas of the dendrite are able to initiate impulses repetitively; the regular site of impulse initiation is in the basal area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 134 (1979), S. 131-136 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Across the sensory epithelium of isolated cockroach antennae, perfused and superfused with identical physiological solutions, a transepithelial voltage (TEP) of about 15 mV (outside positive) has been recorded. It corresponds to somewhat higher transepithelial voltages localized at the sites of sensilla. Related to this voltage is a transepithelial short circuit current (SCC), which lasts for the hours of survival of the preparation. Density of SCC is near 2.1 μA/cm2 at the outer surface of the integument. TEP and SCC are reversibly reduced by anoxia and by poisons blocking the formation of ATP (Fig. 4–7). We conclude that an active ion transport located within certain cells of the receptor units is the source of the electrical phenomena observed. Comparative morphological and physiological reasons suggest the electrogenic potassium outward transport to be the special mechanism involved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 48 (1964), S. 131-156 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Description / Table of Contents: Summary The receptor potential of the single mechanoreceptor cells corresponding to the hair-plate sensillae of bees were recorded using extracellular capillary microelectrodes. Stimulation was achieved by bending of the hair, and defined by the direction, angle, and speed of bending. The dynamic behaviour of the receptor potential is investigated as a function of the initial position of the hair, and amplitude and speed of change of its position. A fast transition of the stimulus to a higher, constant level is answered — after a latency-period in the order of 0,1 msec — by a peak of the receptor potential which then decays to a new constant level in about 5 sec. The decay of the potential is interrupted by a period of time in which the potential increases again or remains constant. The decay before and after this interruption has an approximately exponential course; the time constant of the first phase lies between 1 and 30 msec, of the second phase between 0,8 and 2 sec (Fig. 1, 2; p. 134ff.). With stimuli of different amplitudes, or with equal amplitudes at different positions, the fractional decrease of the potential in the two phases vary in opposite directions (Fig. 4, 12, 14). The time constant of the first decay-phase varies with these alterations of stimulus parameters within a factor ten; in contrast the time constant of the second phase remains nearly unchanged (Fig. 5, 8, 13). The fraction of decay in the first phase is maximal when the hair is nearly perpendicular. Because of this maximal decay, the receptor responds to small bendings of the hair purely phasicaly; these responses have the smallest time constant of the first falling-phase (Fig. 10; p. 136, 137ff.). The decay time constant of the first potential phase τ ab 1 has the following relation to the amplitudes of the potential ΔU dyn (amplitude in the peak) and ΔU m (amplitude in the minimum of potential) $$\tau _{ab1} \sim \frac{{\Delta {\text{ }}U_m }}{{\Delta {\text{ }}U_{dyn} }}$$ (Fig. 9, p. 140). With respect to different speeds of bending both phases of the potential behave like differentiating RC-combinations: with decreasing stimulus speed the amplitude of the potential peak falls, while the time constant of the decay remains unchangened (Fig. 3, 12; p. 136, 143). If the potential increases a second time then the amplitude of the second increase is always greater when the fall in the first phase is faster (Fig. 10; p. 141). At the end of the stimulus the response is usually a sudden return to zero without a negative afterpotential; however a fast first phase and a slower second phase can usually be recognised also here (Fig. 15; p. 144). This and most other potentials resulting at the beginning and end of the stimulus can be expressed formally as the sum of a rapidly increasing, purely phasic component and a more slowly rising tonic component. The time constants of the rises of these two components and their sensitivities must be varied independently to obtain the various potential time courses. It is discussed wether these two formal elements correspond to two causal components (p. 150ff.). It is suggested on the basis of the behaviour of the two phases of the potential fall, that these phases result from two causes: the first potential fall corresponding to the rise of Na-inactivation at the nerve fiber membran; the second to an alteration of ion-concentration at the receptor membran resulting from its depolarization (p. 145ff).
    Notes: Zusammenfassung Von mechanorezeptorischen Borstenfeld-Sensillen wird das Rezeptorpotential der einzelnen, einem Sensillum zugeordneten Sinneszelle extrazellulär mit Kapillarelektroden abgeleitet. Die Reizung des Sensillums erfolgt durch Borstenabbiegung, die nach Richtung, Grad und Geschwindigkeit definiert ist. Das dynamische Verhalten des Rezeptorpotentials wird in Abhängigkeit von der Amplitude und der Lage des Reizes im Arbeitsbereich und der Anstiegsgeschwindigkeit des Reizes untersucht. Ein schneller Übergang des Reizes auf ein höheres, konstantes Niveau wird nach einer Latenz in der Größenordnung von 0,1 msec durch eine Rezeptorpotential-Spitze beantwortet, die auf ein neues konstantes Niveau in ungefähr 5 sec abfällt. Der Potentialabfall wird durch einen zweiten Potentialanstieg oder durch eine Zeitspanne mit konstanter Potentialhöhe unterbrochen. Der Abfall vor und nach dieser Unterbrechung hat einen ungefähr exponentiellen Verlauf; die Zeitkonstanten liegen in der ersten Phase zwischen 1 und 30 msec, in der zweiten zwischen 0,8 und 2 sec (Abb. 1, 2; S. 134ff.). Bei Reizen mit unterschiedlichen Amplituden oder gleichen Amplituden mit unterschiedlichen Lagen im Arbeitsbereich ändern sich die prozentualen Anteile des Potentialabfalles in den beiden Phasen gegensinnig (Abb. 4, 12, 14). Die Zeitkonstante der ersten Abfallphase ändert ihre Größe bei diesen Änderungen der Reizgrößen im Bereich einer Zehnerpotenz; die Zeitkonstante der zweiten Phase bleibt dagegen nahezu unverändert (Abb. 5, 8, 13). Seinen größten prozentualen Umfang hat der erste Potentialabfall bei Reaktionen am Beginn des Arbeitsbereiches; auf kleine Borstenabbiegungen reagieren die Rezeptoren durch diesen Abfall rein phasisch mit hoher Empfindlichkeit; diese Potentialverläufe haben die kleinste Zeitkonstante der ersten Abfallphase (Abb. 10; S. 136, 137ff.). Die Abfallszeitkonstante der ersten Potentialphase τ ab 1 steht zu den Potentialamplituden ΔU dym (Spitzenamplitude) und Δ U m (Amplitude im Potentialminimum) bei rechteckförmiger Reizung in der Beziehung $$\tau _{ab1} \sim \frac{{\Delta {\text{ }}U_m }}{{\Delta {\text{ }}U_{dyn} }}$$ (Abb. 9; S. 140). Gegenüber verschiedenen Anstiegssteilheiten des Reizes verhalten sich beide Potentialphasen wie differenzierende RC-Glieder: mit abnehmender Anstiegssteilheit nimmt die Höhe der Erregungsspitze ab, die Abfallszeitkonstanten bleiben gleich (Abb. 3, 12; S. 136, 143). Wenn ein langsamer zweiter Potentialanstieg auftritt, so ist er gegenüber der Höhe des Potentialminimums um so höher, je schneller das Potential in der ersten Phase abgefallen ist (Abb. 10; S. 141). Auch in dem meist angenähert rechteckförmig verlaufenden Rückgang des Rezeptorpotentials nach Reizende ist häufig eine erste. steile Potentialänderung von einer zweiten, langsameren Phase zu unterscheiden (Abb. 15; S. 144). Diese und alle weiteren häufiger auftretenden Potentialverläufe bei Reizbeginn und -ende lassen sich aus einer schnell ansteigenden rein phasischen und einer langsam ansteigenden tonischen Komponente formal aufbauen, deren Abfalls- bzw. Anstiegszeitkonstanten und deren relative Empfindlichkeiten unabhängig voneinander variieren. Es wird diskutiert, ob diesen formalen Elementen zwei kausale Komponenten entsprechen (S. 150). Aus dem Verhalten der beiden Phasen des Potentialabfalles wird auf verschiedene Ursachen dieser Abfälle geschlossen. Der erste Potentialabfall wird mit dem Anstieg der Na-Inaktivierung an Nervenfaser-Membranen verglichen. Die Ursache für die zweite Abfallphase wird in einer durch die Depolarisation hervorgerufenen Änderung der Ionenkonzentration an der Rezeptormembran vermutet (S. 145ff.).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 46 (1963), S. 351-382 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Zusammenfassung Von der Basis mechanorezeptorischer Borstenfeld-Sensillen (Hals-Borstenfeld der Honigbiene) werden Rezeptorpotential und Nervenimpulse der einzelnen, einem Sensillum zugeordneten Sinneszelle abgeleitet. Zur Reizung des Sensillums wird die zugehörige Borste nach Richtung, Grad und Geschwindigkeit definiert abgebogen (S. 379f.). Der Bau der Sensillen und ihre Verformungen bei der Borstenabbiegung werden nach Untersuchungen von Lebend-Schnitten beschrieben (S. 354ff., 376ff.; Abb. 2–5). Aus den Formen der Aktionspotentiale und den Ableitverhältnissen wird geschlossen, daß die Impulse in einer gewissen Distanz proximal vom Ursprungsort des Rezeptorpotentials entstehen und auf der Nervenfaser in beiden Richtungen geleitet werden (S. 366ff.). Die Rezeptorelemente gehören dem phasisch-tonischen Reaktionstyp an; sie senden in der Ruhestellung keine Nervenimpulse (S. 360ff.; Abb. 7). Die Frequenz der Impulse einer gereizten Sinneszelle ist unabhängig von der Erregung der Nachbarelemente (S. 363). Im größten Teil des Arbeitsbereiches der Rezeptoren verhält sich ihre Unterschiedsempfindlichkeit etwa proportional der Temperatur (Q 10 im Mittel 1,9) (S. 365f.). Die Empfindlichkeit der Sensillen ist von der Abbiegungsrichtung abhängig. Das Richtungsdiagramm ist einer Cosinus-Kurve ähnlich (S. 370ff.; Abb. 12, 13). Die Verteilung der Richtungen maximaler Empfindlichkeit innerhalb des Borstenfeldes wird beschrieben (S. 372f.; Abb. 14). Das stationäre Niveau des Rezeptorpotentials steigt in grober Annäherung proportional mit dem Abbiegungsgrad der Borsten an (Abbiegungsrichtung maximaler Empfindlichkeit); für die Impulsfrequenz gilt dasselbe nur bei kleinen Abbiegungen (S. 373ff.; Abb. 15, 16). Aus einem Vergleich der Rezeptor-Reaktionen mit dem Bau der Sensillen folgt in Hinsicht auf den Reizmechanismus: Die Längsdehnung des distalen Sinneszell-Fortsatzes, wie sie bei einer Borstenabbiegung auftritt, ist nicht reizwirksam; dagegen entspricht das Auftreten einer Erregung in allen Fällen einer Verkürzung der inneren Kontur der Gelenkmembran am Ort des Nervenfaser-Ansatzes (S. 376ff.).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The battery mother cell complexes in the tentacles ofHydra vulgaris contain a neuronal cell known as sensorimotor interneuron that is characterized by a modified cilium lying parallel to the mesoglea. The cilium is surrounded by up to three rings of microvilli. Microvilli and cilium arise in an unusual antiparallel orientation from the opposite poles of a central cellular cavity. The lumen of this cavity communicates with the extracellular environment by way of a straight channel-like opening that is encircled by the microvillar rings. The modified cilium extends into the channel and terminates outside in the intercellular space. The wall of the cavity and the channel are stabilized by bundles of microtubules. A prominent glycocalyx interconnects all microvilli and links the innermost microvillar ring to the cilium. Within this contact region approximately 0.7 Μm in length the ciliary axoneme is specifically modified: all nine microtubule doublets and up to six additional microtubules are embedded in electron-dense material. The microtubule doublets are connected to the ciliary membrane by ledges of Y-shaped cross-bridging elements. These axonemal modifications resemble those known from the hydrozoan cnidocil complex or from the outer segments of insect mechanoreceptor cells. Distribution and orientation of the sensorimotor interneuron within the tentacles indicate a mechanosensory function of the cell similar to that of chordotonal receptors of insects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Zoomorphology 114 (1994), S. 185-194 
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A mechanosensitive ciliated cell type of the polyp Stauridiosarsia producta (Hydrozoa) was investigated by means of electron microscopy. These cells bear at their apical cell surface a modified cilium, a set of seven stereovilli, a so-called pseudovillar system and a large vacuole. Cilium and stereovilli are interconnected like the cnidocil apparatus of hydrozoan nematocytes which is responsible for mechanoelectric transduction. The vacuole is enclosed by and linked to the pseudovillar system by a microtubular basket. Considering its structural organization and physiological activities the ciliated sensory cell closely resembles a nematocyte that has lost its ability ot produce a nematocyst.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-11-01
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1964-09-04
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...