ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-11-16
    Description: Activation-induced cytidine deaminase (AID) plays an essential role in class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes. We report here that deficiency in AID results in the development of hyperplasia of isolated lymphoid follicles (ILFs) associated with a 100-fold expansion of anaerobic flora in the small intestine. Reduction of bacterial flora by antibiotic treatment of AID-/- mice abolished ILF hyperplasia as well as the germinal center enlargement seen in secondary lymphoid tissues. Because an inability to switch to immunoglobulin A on its own does not lead to a similar phenotype, these results suggest that SHM of ILF B cells plays a critical role in regulating intestinal microflora.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fagarasan, Sidonia -- Muramatsu, Masamichi -- Suzuki, Keiichiro -- Nagaoka, Hitoshi -- Hiai, Hiroshi -- Honjo, Tasuku -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1424-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434060" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents ; B-Lymphocytes/immunology ; Bacteria, Aerobic/*growth & development ; Bacteria, Anaerobic/*growth & development ; Cell Division ; Colony Count, Microbial ; Cytidine Deaminase/genetics/*metabolism ; Dendritic Cells, Follicular/immunology ; Drug Therapy, Combination/pharmacology ; Genes, Immunoglobulin ; Germinal Center/immunology ; Homeostasis ; Hyperplasia ; Immunization ; Immunoglobulin Class Switching ; Immunoglobulin Variable Region/genetics ; Intestine, Small/immunology/*microbiology ; Lymphocyte Activation ; Lymphoid Tissue/immunology/*pathology ; Metronidazole/pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Peyer's Patches/pathology ; Somatic Hypermutation, Immunoglobulin ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-02-24
    Description: Dilated cardiomyopathy is a severe pathology of the heart with poorly understood etiology. Disruption of the gene encoding the negative immunoregulatory receptor PD-1 in BALB/c mice, but not in BALB/c RAG-2-/- mice, caused dilated cardiomyopathy with severely impaired contraction and sudden death by congestive heart failure. Affected hearts showed diffuse deposition of immunoglobulin G (IgG) on the surface of cardiomyocytes. All of the affected PD-1-/- mice exhibited high-titer circulating IgG autoantibodies reactive to a 33-kilodalton protein expressed specifically on the surface of cardiomyocytes. These results indicate that PD-1 may be an important factor contributing to the prevention of autoimmune diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, H -- Okazaki, T -- Tanaka, Y -- Nakatani, K -- Hara, M -- Matsumori, A -- Sasayama, S -- Mizoguchi, A -- Hiai, H -- Minato, N -- Honjo, T -- New York, N.Y. -- Science. 2001 Jan 12;291(5502):319-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11209085" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Surface/genetics/*physiology ; Apoptosis Regulatory Proteins ; Autoantibodies/*analysis/blood ; Autoantigens/chemistry/immunology ; Autoimmune Diseases/*immunology/pathology/physiopathology ; Cardiomyopathy, Dilated/*immunology/pathology/physiopathology ; Complement C3/analysis ; Echocardiography ; Heart Failure/etiology ; Immunoglobulin G/analysis/blood ; Membrane Proteins/chemistry/immunology ; Mice ; Mice, Inbred BALB C ; Molecular Weight ; Myocardium/*immunology/pathology ; Programmed Cell Death 1 Receptor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-06
    Description: Recent results emphasize the roles of T-independent antibody response in humoral defenses, for which B1 cells and marginal zone B cells are mostly responsible. We discuss how these cells are activated, migrate, and differentiate into antibody-producing cells in various lymphoid tissues. Based on recent findings in each of these areas of B cell biology, we propose a possible mechanism for peripheral tolerance of autoreactive B cells at target organs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fagarasan, S -- Honjo, T -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):89-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Faculty of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Formation ; Autoantibodies/biosynthesis ; B-Cell Activating Factor ; B-Lymphocytes/cytology/*immunology ; Cell Differentiation ; Cell Movement ; DNA-Binding Proteins/physiology ; Humans ; Immune Tolerance ; Immunity, Innate ; Immunity, Mucosal ; *Lymphocyte Activation ; Lymphoid Tissue/cytology/immunology ; *Membrane Proteins ; Models, Immunological ; Signal Transduction ; T-Lymphocytes/*immunology ; Tumor Necrosis Factor-alpha/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-06-18
    Description: Activation-induced cytidine deaminase (AID), a putative RNA-editing enzyme, is indispensable for somatic hypermutation (SHM), class switch recombination, and gene conversion of immunoglobulin genes, which indicates a common molecular mechanism for these phenomena. Here we show that ectopic expression of AID alone can induce hypermutation in an artificial GFP substrate in NIH 3T3 murine fibroblast cells. The frequency of mutations was closely correlated with the level of transcription of the target gene, and the distribution of mutations in NIH 3T3 cells was similar to those of SHM in B lymphocytes. These results indicate that AID is sufficient for the generation of SHM in an actively transcribed gene in fibroblasts, as well as B cells, and that any of the required cofactors must be present in these fibroblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, Kiyotsugu -- Okazaki, Il-Mi -- Eto, Tomonori -- Kinoshita, Kazuo -- Muramatsu, Masamichi -- Nagaoka, Hitoshi -- Honjo, Tasuku -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2033-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12065838" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; B-Lymphocytes/physiology ; Base Sequence ; Cytidine Deaminase/genetics/*metabolism ; DNA/chemistry/genetics ; Genes, Reporter ; Green Fluorescent Proteins ; Luminescent Proteins/genetics/metabolism ; Mice ; Molecular Sequence Data ; *Mutation ; Nucleic Acid Conformation ; Point Mutation ; Recombinant Proteins/metabolism ; Somatic Hypermutation, Immunoglobulin ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-03-17
    Description: Most of the immunoglobulin A (IgA) in the gut is generated by B cells in the germinal centers of Peyer's patches through a process that requires the presence of CD4+ follicular B helper T(TFH) cells. The nature of these T(FH) cells in Peyer's patches has been elusive. Here, we demonstrate that suppressive Foxp3+CD4+ T cells can differentiate into TFH cells in mouse Peyer's patches. The conversion of Foxp3+ T cells into TFH cells requires the loss of Foxp3 expression and subsequent interaction with B cells. Thus, environmental cues present in gut Peyer's patches promote the selective differentiation of distinct helper T cell subsets, such as TFH cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsuji, Masayuki -- Komatsu, Noriko -- Kawamoto, Shimpei -- Suzuki, Keiichiro -- Kanagawa, Osami -- Honjo, Tasuku -- Hori, Shohei -- Fagarasan, Sidonia -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1488-92. doi: 10.1126/science.1169152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Mucosal Immunity, RIKEN, Yokohama 1-7-22, Tsurumi, Yokohama, 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286559" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Antigens, CD40/metabolism ; B-Lymphocytes/immunology ; CD4-Positive T-Lymphocytes/cytology/*immunology/metabolism ; Cell Differentiation ; Dendritic Cells/cytology/immunology ; Down-Regulation ; Forkhead Transcription Factors/genetics/*metabolism ; Gene Expression Profiling ; Germinal Center/immunology ; Immunoglobulin A, Secretory/biosynthesis ; Intestine, Small/cytology/immunology ; Lymph Nodes/cytology/immunology ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Peyer's Patches/cytology/*immunology ; Spleen/cytology/immunology ; T-Lymphocyte Subsets/cytology/*immunology/metabolism ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; T-Lymphocytes, Regulatory/cytology/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Honjo, Tasuku -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Center for Science Systems, Japan Society for the Promotion of Science, Tokyo and Kyoto University, Kyoto, Japan. honjo@mfour.med.kyoto-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123288" target="_blank"〉PubMed〈/a〉
    Keywords: Budgets ; Government ; Japan ; Peer Review, Research ; *Research Support as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-08-25
    Description: Activation-induced cytidine deaminase (AID) is required for the DNA cleavage step in immunoglobulin class switch recombination (CSR). AID is proposed to deaminate cytosine to generate uracil (U) in either mRNA or DNA. In the second instance, DNA cleavage depends on uracil DNA glycosylase (UNG) for removal of U. Using phosphorylated histone gamma-H2AX focus formation as a marker of DNA cleavage, we found that the UNG inhibitor Ugi did not inhibit DNA cleavage in immunoglobulin heavy chain (IgH) locus during CSR, even though Ugi blocked UNG binding to DNA and strongly inhibited CSR. Strikingly, UNG mutants that had lost the capability of removing U rescued CSR in UNG-/- B cells. These results indicate that UNG is involved in the repair step of CSR yet by an unknown mechanism. The dispensability of U removal in the DNA cleavage step of CSR requires a reconsideration of the model of DNA deamination by AID.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Begum, Nasim A -- Kinoshita, Kazuo -- Kakazu, Naoki -- Muramatsu, Masamichi -- Nagaoka, Hitoshi -- Shinkura, Reiko -- Biniszkiewicz, Detlev -- Boyer, Laurie A -- Jaenisch, Rudolf -- Honjo, Tasuku -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1160-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15326357" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/enzymology/immunology/*physiology ; Cell Line, Tumor ; Cytidine Deaminase/metabolism ; DNA/*metabolism ; DNA Glycosylases/antagonists & inhibitors/genetics/*metabolism ; DNA Repair ; *Genes, Immunoglobulin ; *Immunoglobulin Class Switching ; Immunoglobulin Heavy Chains/genetics ; Immunoglobulin Switch Region ; Mice ; Mutation ; Precipitin Tests ; Recombination, Genetic ; Transfection ; Uracil/metabolism ; Uracil-DNA Glycosidase ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-02-07
    Description: Stromal-derived factor (SDF-1) is the principal ligand for CXCR4, a coreceptor with CD4 for T lymphocyte cell line-tropic human immunodeficiency virus-type 1 (HIV-1). A common polymorphism, SDF1-3'A, was identified in an evolutionarily conserved segment of the 3' untranslated region of the SDF-1 structural gene transcript. In the homozygous state, SDF1-3'A/3'A delays the onset of acquired immunodeficiency syndrome (AIDS), according to a genetic association analysis of 2857 patients enrolled in five AIDS cohort studies. The recessive protective effect of SDF1-3'A was increasingly pronounced in individuals infected with HIV-1 for longer periods, was twice as strong as the dominant genetic restriction of AIDS conferred by CCR5 and CCR2 chemokine receptor variants in these populations, and was complementary with these mutations in delaying the onset of AIDS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winkler, C -- Modi, W -- Smith, M W -- Nelson, G W -- Wu, X -- Carrington, M -- Dean, M -- Honjo, T -- Tashiro, K -- Yabe, D -- Buchbinder, S -- Vittinghoff, E -- Goedert, J J -- O'Brien, T R -- Jacobson, L P -- Detels, R -- Donfield, S -- Willoughby, A -- Gomperts, E -- Vlahov, D -- Phair, J -- O'Brien, S J -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):389-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Science Applications International Corporation (SAIC), National Cancer Institute, Frederick, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430590" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/genetics/*immunology/virology ; Adult ; Chemokine CXCL12 ; Chemokines/chemistry/*genetics/physiology ; *Chemokines, CXC ; Cohort Studies ; Continental Population Groups ; Disease Progression ; Genes ; Genetic Variation ; Genotype ; HIV Infections/genetics/*immunology/virology ; HIV-1/*physiology ; Heterozygote ; Humans ; Male ; Molecular Sequence Data ; Odds Ratio ; Polymorphism, Genetic ; Receptors, CCR2 ; Receptors, CCR5/genetics/physiology ; Receptors, CXCR4/metabolism ; Receptors, Chemokine/genetics/physiology ; Survival Analysis ; T-Lymphocytes/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-03
    Description: During mouse embryogenesis the production of "primitive" erythrocytes (EryP) precedes the production of "definitive" erythrocytes (EryD) in parallel with the transition of the hematopoietic site from the yolk sac to the fetal liver. On a macrophage colony-stimulating factor-deficient stromal cell line OP9, mouse embryonic stem cells were shown to give rise to EryP and EryD sequentially with a time course similar to that seen in murine ontogeny. Studies of the different growth factor requirements and limiting dilution analysis of precursor frequencies indicate that most EryP and EryD probably developed from different precursors by way of distinct differentiation pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakano, T -- Kodama, H -- Honjo, T -- New York, N.Y. -- Science. 1996 May 3;272(5262):722-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Faculty of Medicine, Kyoto University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Line ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Coculture Techniques ; Erythroid Precursor Cells/*cytology ; *Erythropoiesis ; Erythropoietin/pharmacology ; Kinetics ; Mice ; Signal Transduction ; Stem Cell Factor/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-19
    Description: An efficient system was developed that induced the differentiation of embryonic stem (ES) cells into blood cells of erythroid, myeloid, and B cell lineages by coculture with the stromal cell line OP9. This cell line does not express functional macrophage colony-stimulating factor (M-CSF). The presence of M-CSF had inhibitory effects on the differentiation of ES cells to blood cells other than macrophages. Embryoid body formation or addition of exogenous growth factors was not required, and differentiation was highly reproducible even after the selection of ES cells with the antibiotic G418. Combined with the ability to genetically manipulate ES cells, this system will facilitate the study of molecular mechanisms involved in development and differentiation of hematopoietic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakano, T -- Kodama, H -- Honjo, T -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1098-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Faculty of Medicine, Kyoto University Yoshida, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology ; Base Sequence ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Culture Media ; Erythrocytes/cytology ; Erythropoiesis ; Gene Rearrangement ; *Hematopoiesis ; Hematopoietic Stem Cells/*cytology ; Lymphocytes/*cytology ; Macrophage Colony-Stimulating Factor/pharmacology ; Macrophages/cytology ; Mesoderm/cytology ; Mice ; Molecular Sequence Data ; Recombinant Proteins/pharmacology ; Stromal Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...