ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 7186-7191 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: TlBa2CaCu2O7 (Tl-1212) superconducting films 5000–6000 A(ring) thick have been grown on LaAlO3 (100) substrates using oxide precursors in a closed two-zone thallination furnace. Tl-1212 films can be grown with transition temperatures ∼100 K, and critical current densities measured by magnetization of Jcm(5 K)(approximately-greater-than)107 A/cm2 and Jcm(77 K)(approximately-greater-than)105 A/cm2. Processing conditions, substrate temperatures and Tl-oxide source temperatures are found which result in smooth, nearly phase-pure Tl-1212 films. Variations in the respective temperature ramps of the Tl-oxide zone and the substrate zone can greatly influence resulting film properties such as microstructure, morphology, superconducting transition temperature, and critical current density. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 1517-1520 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 A(ring). The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 A(ring). The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 66 (1989), S. 6073-6076 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin films of tungsten silicide have been formed by sputter depositing 710 A(ring) of W metal onto (100)-oriented, 3–7 Ω cm, p-type silicon wafers. The samples were annealed in an ultrahigh vacuum ambient (pressure≤1.0×10−9 Torr) at temperatures ranging from 845 to 1100 °C for 30 s. The lack of oxygen contamination in the ambient allows the W-Si interaction to proceed, first producing both the W-rich W5 Si3 phase and the tetragonal WSi2 phase near 900 °C, followed by only the tetragonal, low-resistivity (30–40 μΩ cm) WSi2 phase above 1000 °C. This result is in contrast to previous work where films formed by rapid thermal processing in vacuum showed no significant W-Si interaction for temperatures below 1100 °C due to the formation of an interfacial oxide diffusion barrier gettered into the films from the 10−6 Torr ambient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The correlations between structural quality and superconducting behavior in 1000-A(ring)-thick Ba2YCu3O7−δ (BYCO) films grown on LaAlO3(100) from the coevaporation of BaF2, Y, and Cu, followed by an optimized ex situ annealing process are reported. Epitaxial films with smooth, laminar morphology and excellent crystallinity can be grown to have critical current density Jc values nearly identical to single crystals. This finding contrasts with the typical observation that Jc values in thin films of BYCO are very high compared to those of single crystals. This is attributed to a greater density of flux pinning sites due to structural defects within the films. The most crystalline films presented here have penetration length λ∼2000 A(ring) with temperature dependencies described well by the Bardeen–Cooper–Schrieffer (BCS) theory. Material disorder of two types can be controlled by the high-temperature stage Ta of the annealing process. The first type is point defects and dislocations the same size or smaller than the coherence length ξab, which Rutherford backscattering/channeling suggests decrease in number with increasing Ta. The second is crevices, pinholes, and microcracks, which are at least one to two orders of magnitude larger than ξab. At Ta 〈 850 °C, crevices, which create areas of nonuniform thickness, occur due to incomplete epitaxial growth and correlate with the presence of weak links. Hence film resistivity is high, Tc is low, and λ is large. As Ta is increased, the film morphology becomes smoother and all electrical properties improve, except for Jc in nonzero applied magnetic fields, since the improved epitaxy correlates with reduced flux pinning. By Ta= 900 °C, the BYCO films are similar to single crystals in both cation alignment and Jc behavior. Above this annealing temperature, pinholes and microcracks develop and increase in both size and density with increasing Ta. Although these relatively large defects do not act as weak links, they do affect magnetic screening (and hence λ), to result in an anomalous temperature dependence that masks the intrinsic BCS behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An increasing number of high speed digital and other circuit applications require very narrow impulses or rapid pulse edge transitions. Shock wave transmission lines using series or shunt Josephson junctions are one way to generate these signals. Using two different high temperature superconducting Josephson junction processes (step-edge and electron beam defined nanobridges), such transmission lines have been constructed and tested at 77 K. Shock wave lines with approximately 60 YBaCuO nanobridges, have generated steps with fall times of about 10 ps. With step-edge junctions (with higher figures of merit but lower uniformity), step transition times have been reduced to an estimated 1 ps.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 2710-2712 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A need exists for low-cost coated-conductor fabrication methods for applications in magnet and electric-power technologies. We demonstrate high-critical current density (Jc) YBa2Cu3O7−δ (YBCO) films grown on Nb-doped SrTiO3 (Nb:STO) buffered Ni(100) tapes. All buffer and superconductor layers are deposited using solution chemistry. A 50 nm thick Nb:STO seed layer on Ni(100) acts as a template for the growth of subsequent thicker layers of Nb:STO. Nb doping improves the electrical conductivity and oxygen diffusion barrier properties of STO. YBCO grows heteroepitaxially directly on this buffer layer, resulting in a transport Jc(77 K)=1.3 MA/cm2. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 2171-2173 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We grow multiwall carbon nanotube (CNT) films using thermal chemical vapor deposition at atmospheric pressure using a mixture of acetylene and nitrogen from a 4-nm-thick Ni film catalyst. CNTs are characterized using electron microscopy and Rutherford backscattering spectrometry. CNTs grown with this method are extremely uniform in diameter, both throughout the sample and within the lengths of individual tubes. Nanotube outer diameters, ranging from 5–350 nm, and the total deposition of carbon material, increase exponentially with growth temperature from 630 °C–790 °C. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 2047-2049 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies 〈60 eV and increases for films grown using ion energies 〉160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of σ- to π-bonded carbon atoms. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 3052-3054 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Modest thermal annealing to 600 °C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%–10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases ∼15% due to the development of the nanocomposite structure. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 759-761 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...