ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-18
    Description: Abstract 1046 Anemia of inflammation (AI) is a widespread multi-factorial form of anemia characterized by hepcidin-induced iron restricted erythropoiesis as well as direct cytokine effects on the bone marrow, blunted erythropoietin production and efficacy, and shortened red blood cell (RBC) lifespan. Our aim is to perform an in depth study of AI, identifying the components and mechanisms associated with its pathophysiology. We generated a mouse model of AI using a single intraperitoneal injection of heat-killed Brucella abortus (HKBA). In this model we explored the role played by interleukin-6 and hepcidin in the onset of anemia. We utilized wild-type (WT), interleukin-6 knockout (IL-6 KO) and hepcidin knockout (Hamp KO) mice (n ≥ 6/group) injected with HKBA, and conducted weekly CBC's for 7 weeks to follow the progression and resolution of anemia. Anemia started developing one week after HKBA administration and reached a nadir after 2 weeks in all mice. Hemoglobin values from WT mice were lowest 2 weeks after injection (6.4 ± 1.2 g/dl) but slowly recovered over 7 weeks. Initially, IL-6 KO mice were equally affected with similar hemoglobin values at 2 weeks (6.9 ± 1.3 g/dl). However, these mice recovered after 3 weeks. Hamp KO mice were less anemic throughout the course of the study, with hemoglobin values of 10.3 ± 0. 9 g/dl at 2 weeks and resolution after 4 weeks. These data demonstrate that while both interleukin-6 and hepcidin contribute to AI, lack of either molecule alone is not sufficient to prevent AI. Therefore, additional factors likely play an important role in the etiology of AI. In order to rule out the effect of iron overload on the reduced severity of anemia observed in Hamp KO mice injected with HKBA, 1 week-old mice were fed an iron-deficient diet in order to first deplete their iron stores, and then returned to the normal diet before HKBA injection. We observed that iron-depleted Hamp KO mice were still less sensitive to HKBA administration, suggesting that this effect was independent of iron overload and dependent on the intrinsic lack of hepcidin expression. We further investigated the erythropoiesis in WT, IL-6 KO, and Hamp KO mice one week after HKBA injection. We performed FACS analyses of BM and spleen using CD44 and Ter119 antibodies. Both the mature RBCs (CD44−/Ter119+) and erythroid progenitor cells (CD44+/Ter119+) were dramatically reduced in the BM of HKBA-treated WT mice compared to controls (CD44+/Ter119+ cells diminished from 35.5 ± 0.2% to 2.8 ± 0.8%; CD44−/Ter119+ cells from 17.2 ± 0.2% to 8.2 ± 0.8%). The reduction of erythroid cells was attenuated in HKBA-treated IL-6 KO mice (CD44+/Ter119+ cells diminished from 32.8 ± 0.1% to 7.5 ± 6.0%; CD44−/Ter119+ cells from 22.1 ± 0.5% to 10.4 ± 3.8%). Hamp KO mice, on the other hand, showed a dramatic reduction of the CD44+/Ter119+ population in their BM (from 24.1 ± 2.5% to 1.8 ± 0.3%), while mature CD44−/Ter119+ cells were less affected (from 15.4 ± 2.3% to 14.1 ± 2.6%). Erythropoiesis was altered in the spleen as well. However, while the CD44+/Ter119+ cells were reduced in all the mice strains, the CD44−/Ter119+ population was increased one week after HKBA injection. This profile was more similar to ineffective erythropoiesis than iron-restricted erythropoiesis. Splenomegaly was also observed in all HKBA-treated mice. In addition, we measured increased apoptosis and production of reactive oxygen species (ROS) in the reticulocytes and orthochromatic erythroblasts of the spleen and BM of all mice. Overall, these data suggest that, in addition to iron restricted-erythropoiesis, an acute inflammatory effect on erythropoiesis is occurring in the HKBA model of AI, affecting erythroid cell survival and/or proliferation. Further analyses aimed at determining the RBC life span and survival in these mice are in progress. Moreover, we are analyzing iron-related gene expression in all groups of mice, along with measurement of their serum iron levels, iron stores, and serum cytokine levels, at different time points. Preliminary data indicate that numerous cytokine mRNAs (including IL-1α, IL-1β, TNF-α, INF-γ) are elevated in the spleen of WT mice 6 hours after HKBA injection. We are investigating the role that these cytokines might have on erythropoiesis, and the anemia observed in IL-6 KO and Hamp KO mice after injection of HKBA. Disclosures: Cooke: Amgen: Employment. Sasu:Amgen: Employment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-20
    Description: Abstract 2000 Poster Board I-1022 Hepcidin is a 25 amino acid peptide that is the central mediator of iron metabolism. Iron excess, deficiency and maldistribution have been implicated in the etiology of many diseases including atherosclerosis, diabetes, neurodegeneration and the anemia of inflammation. Determination of hepcidin levels may be useful in diagnosis and treatment decisions for some or all of these diseases. Serum hepcidin measurement has so far been limited to a prohepcidin (60 amino acid hepcidin precursor) ELISA, mass spectrometry (MS)-based assays or competition ELISAs using polyclonal anti-hepcidin antibodies. The current work describes the generation of a sandwich ELISA using monoclonal antibodies to detect human hepcidin (hHepc) and optimization of assay conditions to resolve inconsistencies between MS- and ELISA-based detection. The ability of two anti-hHepc antibodies to sandwich (bind simultaneously) with hHepc was demonstrated using a rabbit polyclonal antibody preparation from hHepc-immunized animals. The same polyclonal antibody preparation was used for both hHepc capture and detection. The limit of detection achieved with this assay was O.D.4501000 hybridoma supernatants identified three classes of antibodies: classes 1 and 2 each recognized epitopes found in both full length mature hHepc (hHepc 25) and a shorter version (hHepc 20); class 3 bound a different epitope and demonstrated an increased affinity for hHepc 25 over hHepc 20. The majority of antibodies characterized were in class 1 while antibodies in classes 2 and 3 were rare (∼1% of antibody panel) highlighting the difficulty in achieving a sandwiching event. Antibodies 19D12 (class 1) and 23F11 (class 2) were identified as the optimal sandwich pair with a detection range of approximately 0.2-1000 ng/ml using synthetic hHepc. Initial comparisons of data generated using the sandwich ELISA and a fully-quantitative MS-based assay demonstrated a lack of consistent agreement. This issue was somewhat addressed by introduction of an alkaline treatment step to dissociate any protein/hHepc complexes in serum. Subsequent comparison of the two assays using sera from several different patient populations (anemia of cancer, chemotherapy-induced anemia, kidney disease) as well as healthy donors demonstrated good correlation (R2 range = 0.83-0.92; n=237). This sandwich ELISA may represent a tool for aligning the MS and ELISA-generated results in a format that has the potential to be high throughput and widely available. Disclosures: Arvedson: Amgen: Employment. Doellgast:Amgen: Employment. Salimi-Moosavi:Amgen: Employment. King:Amgen: Employment. Foltz:Amgen: Employment. Chen:Amgen: Employment. Li:Amgen: Employment. Sasu:Amgen: Employment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-13
    Description: Introduction: Autologous anti-BCMA CAR-T cells have been successfully used in clinical trials for the treatment of relapsed refractory Multiple Myeloma (rrMM), achieving high initial response rates (〉80%). However, in some patients these therapeutic responses were not sustained long-term and patients relapsed within 12-18 months1,2. Poor T cell fitness leading to early CAR-T cell exhaustion as well as BCMA negative tumour escape are thought to be factors contributing to treatment failure. In this study we describe for the first time the activity of an allogeneic anti-BCMA CAR-T cell product derived from young healthy donors (HD) against primary MM cells using patient bone marrow (BM) biopsies. In addition, we compare the performance of HD and MM patient-derived anti-BCMA CAR-T cells. Results: We have developed a clinically relevant model to test the efficacy of allogeneic anti-BCMA CAR-T cells against primary MM cells. This ex vivo platform uses bulk BM biopsies from MM patients to represent the heterogeneity seen in MM tumours in vivo, including their complex genomic background and unique immunosuppressive microenvironment. Newly diagnosed patients and rrMM patients with high risk genetics are included in the cohort. Using this model we show that allogeneic anti-BCMA CAR-T cells efficiently eliminate primary MM cells after 4 hours of co-culture, in a dose-dependent manner (n=9). These allogeneic anti-BCMA CAR-T cells specifically target BCMA-expressing primary MM cells (including samples with low BCMA levels and high risk genomic abnormalities, with specific anti-BCMA CAR-T cell killing of 13-73%), whilst not affecting non-tumour cells in the BM microenvironment. Moreover, we show that anti-BCMA CAR-T cells become significantly activated after exposure to CD138+ MM cells (〉50% CD25+ T cells versus
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-29
    Description: Autologous chimeric antigen receptor (CAR) T cells targeting B-Cell Maturation Antigen (BCMA) have demonstrated promising clinical activity, inducing durable responses in patients with relapsed/refractory multiple myeloma (MM). Development of autologous CAR T therapies is however limited by logistical challenges and the time required for manufacturing, which has to be done for each patient. In addition, manufacturing may not be feasible in some patients. An allogeneic approach that utilizes engineered cells from a healthy donor could potentially expand patient access to these therapies by providing a readily available off-the-shelf product. We have previously described the screening of a library of single chain variable fragments (scFvs) with high affinity to human BCMA and the identification of candidate BCMA CARs with potent antitumor activity. Here we sought to further characterize ALLO-715, our lead allogeneic BCMA CAR T cell product, for its specificity to human BCMA, antitumor efficacy in vitro using a long-term killing assay and in xenograft mouse models with physiologic levels of human IL-7 and IL-15, and suitability for scale-up manufacturing. Allogeneic ALLO-715 CAR T cells were generated by lentiviral transduction with a second generation CAR construct incorporating a novel scFv derived from a fully-human antibody with high affinity to BCMA (KD value ~ 5 nM, determined at 37°C) and featuring a rituximab-driven off-switch. Transduced T cells were then transfected with mRNAs encoding Transcription Activator-Like Effector Nucleases (TALEN®) designed to specifically disrupt the T cell receptor alpha chain and CD52 loci. These modifications result in a cell product with a lower risk of TCR-mediated graft-versus-host disease and resistance to the CD52 antibody alemtuzumab, a lymphodepleting agent. BCMA CAR T cells exhibited robust cell expansion, with low levels of tonic signaling that resulted in minimal differentiation (〉 50% Tscm/Tcm phenotype). In in vitro assays, ALLO-715 CAR T cells displayed potent cytotoxic activity when co-cultured with the target cell lines MM.1S, Molp-8, and BCMA-REH but negligible cytotoxicity against BCMA-negative REH cells. The high proliferative potential indicated by the high frequency of memory T cells was validated in long-term killing assays, where ALLO-715 CAR T cells showed substantial expansion in the presence of MM.1S cells with no evidence of exhaustion or diminished cytolytic activity after seven days of continuous exposure to target. The potency of ALLO-715 CAR T cells was unaffected by high concentrations of soluble BCMA (〉10 ug/mL), which has been shown previously to interfere with the activity of some BCMA-specific CARs. In MM xenograft mouse models, ALLO-715 CAR T cells were highly efficacious at single dose. High serum IL-15 levels have been associated with CAR T cell expansion in clinical trials. To evaluate the impact of homeostatic cytokines on CAR T cell survival and antitumor activity in our xenograft models, mice were administered adeno-associated viruses (AAV) for the expression of human IL-7 and IL-15. In the presence of physiological concentrations of these cytokines, enhanced BCMA CAR T cell expansion and anti-tumor activity were observed. To assess potential off-target interactions of ALLO-715 CAR, tissue cross-reactivity studies were carried out on standard human tissue panels using a scFv-human IgG fusion protein. Consistent with the limited expression pattern of BCMA, reactivity was seen on scattered cells in lymphoid tissues such as tonsil and abundantly on BCMA-expressing cell lines, but no appreciable staining was detected in other tissues. We examined BCMA CAR T cells manufactured following a proprietary GMP-like clinical scale process and found that cell expansion and viability, T cell phenotype and in vivo antitumor efficacy were preserved. These results demonstrate the potential of ALLO-715 as a novel allogeneic BCMA CAR T therapy for the treatment of relapsed/refractory MM and other BCMA-positive malignancies. Disclosures Sommer: Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties. Boldajipour:Pfizer Inc.: Employment, Patents & Royalties. Valton:Cellectis.Inc: Employment, Equity Ownership, Patents & Royalties. Galetto:Cellectis SA: Employment, Equity Ownership, Patents & Royalties. Bentley:Allogene Therapeutics: Employment, Equity Ownership. Sutton:Allogene Therapeutics: Employment, Equity Ownership. Ni:Allogene Therapeutics: Employment, Equity Ownership. Leonard:Allogene Therapeutics: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics: Employment, Equity Ownership. Smith:Cellectis. Inc: Employment, Patents & Royalties. Chaparro-Riggers:Pfizer Inc.: Employment, Patents & Royalties. Sasu:Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-20
    Description: Key Points Investigation of the distinct roles of hepcidin and interleukin 6 on iron metabolism and inflammation in the onset and resolution of AI.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-04
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: Patients with relapsed acute myeloid leukemia (AML) have poor prognosis and limited treatment options. Chimeric antigen receptor (CAR) T cells have demonstrated unprecedented clinical efficacy in hematological malignancies, leading to durable responses in heavily pretreated patients. Adoptive immunotherapies using T cells redirected against AML cells are being pursued as one option with potential curative intent. However, the development of autologous CAR T therapies presents a significant logistical and clinical challenge in a rapidly progressing disease setting such as AML due to the lag time of cell manufacturing. Additionally, harvesting sufficient numbers of healthy T cells from patients with AML may not always be possible. For these reasons the development of an off-the-shelf CAR T cell product may be of benefit. This work details the preclinical evaluation of ALLO-819, an allogeneic CAR T therapy targeting the receptor tyrosine kinase Flt3 (CD135), an AML target with high prevalence in all AML subtypes and limited expression outside of the hematopoietic tissue. To construct a Flt3 CAR, a panel of high affinity (KD values of 0.19 to 233 nM, determined at 37°C) fully-human antibodies was generated using phage display technology. Single-chain variable fragments (scFvs) recognizing different immunoglobulin domains of the extracellular region of Flt3 were inserted into second-generation CAR constructs and tested for their ability to redirect T cell specificity and effector function towards AML cells. A lead CAR exhibiting minimal tonic signaling and potent antitumor activity in orthotopic mouse models of AML (2.5x106 and 1x107 CAR T cells for Eol-1 and Molm-13, respectively) was selected for further engineering to incorporate a safety off-switch in cis. To accomplish this, short amino acid stretches mimicking epitopes for the FDA-approved antibody rituximab were inserted between the hinge and target-binding regions of the CAR. The CAR T cell phenotype and antitumor efficacy were not affected by the presence of the off-switch. In the presence of rituximab, Flt3 CAR T cells were efficiently lysed via complement-dependent cytotoxicity (~ 80 % CAR T cell depletion in 3 hours) in vitro and eliminated in peripheral blood and bone marrow of NSG mice (〉100-fold and 〉300-fold, respectively). Allogeneic ALLO-819 Flt3 CAR T cells with a lower risk of TCR-mediated graft-versus-host disease and resistant to anti-CD52 antibody (alemtuzumab)-mediated lysis were generated by disruption of the T-cell receptor alpha chain (TRAC) and the CD52 loci using TALEN® gene-editing technology. Transient expression of TALEN® in Flt3 CAR T cells resulted in high-efficiency inactivation of both loci and had no impact on T cell phenotype or antitumor efficacy. ALLO-819 Flt3 CAR T cells co-cultured with primary AML blasts ex vivo displayed target-dependent activation, cytokine secretion and cytotoxic activity. Consistent with previous reports, we detected Flt3 expression on a subset of normal hematopoietic stem and progenitor cells (HSPCs) which also showed susceptibility to CAR T cell cytotoxicity. To evaluate off-tumor effects of Flt3 CAR T cells in vivo, NSG mice were administered T cells expressing a CAR with similar affinity to both mouse and human Flt3. Mouse-cross-reactive Flt3 CAR T cells exhibited off-tumor activity that was limited to a subset of bone marrow multipotent progenitors and correlated with antitumor efficacy. Administration of rituximab led to effective depletion of CAR T cells in peripheral blood that was followed by a rapid repopulation of HSPCs to levels observed in naïve mice. In summary, these results support the development of ALLO-819 Flt3 CAR T as a novel immunotherapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties. Djuretic:Pfizer Inc.: Employment. Valton:Cellectis.Inc: Employment, Equity Ownership, Patents & Royalties. Nguyen:Allogene Therapeutics: Employment, Equity Ownership. Sutton:Allogene Therapeutics: Employment, Equity Ownership. Poulsen:Allogene Therapeutics: Employment, Equity Ownership. Smith:Cellectis. Inc: Employment, Patents & Royalties. Djuretic:Pfizer Inc.: Employment. Chaparro-Riggers:Pfizer Inc.: Employment, Patents & Royalties. Sasu:Allogene Therapeutics: Employment, Equity Ownership, Patents & Royalties.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-29
    Description: FLT3 is a receptor tyrosine kinase expressed on the surface of acute myeloid leukemia (AML) patient blasts. FLT3 is the most frequently mutated gene in AML patients, and these mutations are associated with poor prognosis. Despite the development of small molecule inhibitors of FLT3 function and neutralizing FLT3 antibodies, there remains a need for antibodies that target the broad AML patient population with improved efficacy and safety. We chose to use Pfizer's proprietary full length humanized CD3 bispecific IgG molecule platform. The first step in the development was finding a suitable targeting epitope on FLT3 as not all epitopes result in optimal T cell activation in the context of CD3 binding. Through a combination of in vitro and in vivo studies, FLT3 antibodies targeting extracellular domain 4 of FLT3 were found to be more effective at AML cell depletion than other domains in the full-length bispecific IgG format, significantly outperforming the antibodies targeting the most membrane proximal region of domain 5. The final candidate antibody was engineered to have picomolar affinity for recombinant human FLT3 (
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-13
    Description: Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-29
    Description: Iron maldistribution has been implicated in multiple diseases, including the anemia of inflammation (AI), atherosclerosis, diabetes, and neurodegenerative disorders. Iron metabolism is controlled by hepcidin, a 25-amino acid peptide. Hepcidin is induced by inflammation, causes iron to be sequestered, and thus, potentially contributes to AI. Human hepcidin (hHepc) overexpression in mice caused an iron-deficient phenotype, including stunted growth, hair loss, and iron-deficient erythropoiesis. It also caused resistance to supraphysiologic levels of erythropoiesis-stimulating agent, supporting the hypothesis that hepcidin may influence response to treatment in AI. To explore the role of hepcidin in inflammatory anemia, a mouse AI model was developed with heat-killed Brucella abortus treatment. Suppression of hepcidin mRNA was a successful anemia treatment in this model. High-affinity antibodies specific for hHepc were generated, and hHepc knock-in mice were produced to enable antibody testing. Antibody treatment neutralized hHepc in vitro and in vivo and facilitated anemia treatment in hHepc knock-in mice with AI. These data indicate that antihepcidin antibodies may be an effective treatment for patients with inflammatory anemia. The ability to manipulate iron metabolism in vivo may also allow investigation of the role of iron in a number of other pathologic conditions.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...