ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-04
    Description: Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase sigma (PTPsigma), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPsigma has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPsigma wedge domain that binds to PTPsigma and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPsigma in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336236/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336236/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lang, Bradley T -- Cregg, Jared M -- DePaul, Marc A -- Tran, Amanda P -- Xu, Kui -- Dyck, Scott M -- Madalena, Kathryn M -- Brown, Benjamin P -- Weng, Yi-Lan -- Li, Shuxin -- Karimi-Abdolrezaee, Soheila -- Busch, Sarah A -- Shen, Yingjie -- Silver, Jerry -- NS025713/NS/NINDS NIH HHS/ -- R01 EY024575/EY/NEI NIH HHS/ -- R01 NS025713/NS/NINDS NIH HHS/ -- R01 NS079432/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):404-8. doi: 10.1038/nature13974. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. ; Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, USA. ; Regenerative Medicine Program and Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. ; Baldwin Wallace University, Berea, Ohio 44017, USA. ; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA. ; Shriners Hospital's Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470046" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chondroitin Sulfate Proteoglycans/*metabolism ; Extracellular Matrix/chemistry/drug effects/metabolism ; Female ; Growth Cones/drug effects/physiology ; Humans ; Mice ; Molecular Sequence Data ; *Nerve Regeneration/drug effects ; Protein Binding/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & ; inhibitors/chemistry/*metabolism ; Spinal Cord Injuries/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...