ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sodha, N -- Williams, R -- Mangion, J -- Bullock, S L -- Yuille, M R -- Eeles, R A -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10939935" target="_blank"〉PubMed〈/a〉
    Keywords: Checkpoint Kinase 2 ; Chromosomes, Human, Pair 15/genetics ; DNA Mutational Analysis ; Exons ; Gene Duplication ; Genetic Variation ; Humans ; Li-Fraumeni Syndrome/*genetics ; Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/*genetics ; *Protein-Serine-Threonine Kinases ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-08
    Description: Subcellular localization of messenger RNAs (mRNAs) can give precise control over where protein products are synthesized and operate. However, just 10 years ago many in the broader cell biology community would have considered this a specialized mechanism restricted to a very small fraction of transcripts. Since then, it has become clear that subcellular targeting of mRNAs is prevalent, and there is mounting evidence for central roles for this process in many cellular events. Here, we review current knowledge of the mechanisms and functions of mRNA localization in animal cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785123/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785123/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holt, Christine E -- Bullock, Simon L -- 085314/Wellcome Trust/United Kingdom -- G0501592/Medical Research Council/United Kingdom -- MC_U105178790/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1212-6. doi: 10.1126/science.1176488.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Cell Nucleus/*metabolism ; Cell Polarity ; Cytoplasm/*metabolism ; Embryo, Nonmammalian/physiology ; Embryonic Development ; Germ Cells/physiology ; Molecular Motor Proteins/*metabolism ; Neurons/metabolism ; Protein Biosynthesis ; RNA Stability ; *RNA Transport ; RNA, Messenger/*metabolism ; Ribonucleoproteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-01
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akbari, Omar S -- Bellen, Hugo J -- Bier, Ethan -- Bullock, Simon L -- Burt, Austin -- Church, George M -- Cook, Kevin R -- Duchek, Peter -- Edwards, Owain R -- Esvelt, Kevin M -- Gantz, Valentino M -- Golic, Kent G -- Gratz, Scott J -- Harrison, Melissa M -- Hayes, Keith R -- James, Anthony A -- Kaufman, Thomas C -- Knoblich, Juergen -- Malik, Harmit S -- Matthews, Kathy A -- O'Connor-Giles, Kate M -- Parks, Annette L -- Perrimon, Norbert -- Port, Fillip -- Russell, Steven -- Ueda, Ryu -- Wildonger, Jill -- R01 AI070654/AI/NIAID NIH HHS/ -- R01 AI110713/AI/NIAID NIH HHS/ -- T32 GM007133/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):927-9. doi: 10.1126/science.aac7932. Epub 2015 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, Univ. of California, Riverside, CA 92507, USA. Center for Disease Vector Research, Institute for Integrative Genome Biology, Univ. of California, Riverside, CA 92507, USA. ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA. ; Section of Cell and Developmental Biology, Univ. of California, San Diego, La Jolla, CA 92095, USA. kevin.esvelt@wyss.harvard.edu ebier@ucsd.edu. ; Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK. ; Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Bloomington Drosophila Stock Center, Department of Biology, Indiana Univ., Bloomington, IN 47405, USA. ; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria. ; CSIRO Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA 6014, Australia. ; Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA. kevin.esvelt@wyss.harvard.edu ebier@ucsd.edu. ; Section of Cell and Developmental Biology, Univ. of California, San Diego, La Jolla, CA 92095, USA. ; Department of Biology, Univ. of Utah, Salt Lake City, UT 84112, USA. ; Laboratory of Genetics, Univ. of Wisconsin-Madison, Madison, WI 53706, USA. ; Department of Biomolecular Chemistry, Univ. of Wisconsin-Madison, Madison, WI 53706, USA. ; CSIRO Biosecurity Flagship, General Post Of ce Box 1538, Hobart, Tasmania, 7001, Australia. ; Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, Univ. of California at Irvine, Irvine, CA 92697, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; Laboratory of Genetics, Univ. of Wisconsin-Madison, Madison, WI 53706, USA. Laboratory of Cell and Molecular Biology, Univ. of Wisconsin-Madison, Madison, WI 53706, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics, Univ. of Cambridge, Cambridge, Cambridgeshire CB2 3EH, UK. ; Department of Genetics, Graduate Univ. for Advanced Studies, Mishima, Shizuoka 411-8540, Japan. NIG-Fly Stock Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. ; Department of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26229113" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CRISPR-Cas Systems ; *Clustered Regularly Interspaced Short Palindromic Repeats ; *Containment of Biohazards ; Endonucleases/metabolism ; *Genetic Engineering ; *Genetic Research ; Genome ; *Organisms, Genetically Modified ; *Safety
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-07
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-16
    Description: The Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR associated (CRISPR/Cas) technology allows rapid, site-specific genome modification in a wide variety of organisms . Proof-of-principle studies in Drosophila melanogaster have used various CRISPR/Cas tools and experimental designs, leading to significant uncertainty in the community about how to put this technology into practice. Moreover, it is unclear what proportion of genomic target sites can be modified with high efficiency. Here, we address these issues by systematically evaluating available CRISPR/Cas reagents and methods in Drosophila . Our findings allow evidence-based choices of Cas9 sources and strategies for generating knock-in alleles. We perform gene editing at a large number of target sites using a highly active Cas9 line and a collection of transgenic gRNA strains. The vast majority of target sites can be mutated with remarkable efficiency using these tools. We contrast our method to recently developed autonomous gene drive technology for somatic and germline genome engineering and conclude that optimized CRISPR with independent transgenes is as efficient, more versatile, and does not represent a biosafety risk.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-23
    Description: The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-05-15
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...