ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 27; 9-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: A method for computing inviscid hypersonic flow over complex configurations using unstructured meshes is presented. The unstructured grid solver uses an edge{based finite{volume formulation. Fluxes are computed using a flux vector splitting scheme that is capable of representing constant enthalpy solutions. Second{order accuracy in smooth flow regions is obtained by linearly reconstructing the solution, and stability near discontinuities is maintained by locally forcing the scheme to reduce to first-order accuracy. The implementation of the algorithm to parallel computers is described. Computations using the proposed method are presented for a sphere-cone configuration at Mach numbers of 5.25 and 10.6, and a complex hypersonic re-entry vehicle at Mach numbers of 4.5 and 9.8. Results are compared to experimental data and computations made with established structured grid methods. The use of the solver as a screening tool for rapid aerodynamic assessment of proposed vehicles is described.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 97-0625
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The hypersonic aerodynamic characteristics of a winged body concept representing a candidate single- stage-to-orbit vehicle which features wing tip fin controllers and elevon/body flap control surfa'Fs are predicted at points along a nominal trajectory for Mach numbers from 5 to 27 and angles of attack from 19 to 32 degrees. Predictions are derived from surface properties based on flow solvers for inviscid and viscous, laminar flows acting as a perfect gas, as a gas in chemical equilibrium and as a gas in chemical non- equilibrium. At a Mach number of 22, the lateral aerodynamic characteristics of the vehicle are determined based on an inviscid analysis at side slip angles of 2 and 4 degrees and 32 degrees angle of attack; a viscous analysis was carried out to determine the effect of gas chemistry model on surface pressure and to determine the incremental aerodynamics for control surface deflections. The results show that the longitudinal pitch characteristics of the baseline configuration, i.e., zero control surface deflections, are significantly altered by real gas chemistry at angles of attack greater than 30 degrees and Mach numbers greater than 9; and, that aerodynamics derived from inviscid solutions are of sufficient accuracy for preliminary analysis. Also, it is shown that a Mach number of 22, the choice of gas chemistry model has a large impact on surface pressure levels at highly localized regions on the vehicle and that the vehicle can be trimmed at control surface deflections less than 11 degrees.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 95-1850
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...