ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-02
    Description: In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.
    Keywords: Aircraft Stability and Control
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.
    Keywords: Research and Support Facilities (Air)
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Preliminary estimates of aerodynamic parameters of an advanced fighter aircraft were obtained from flight data of different values of the angle of attack from 8 to 54 deg. The data were analyzed by a stepwise regression with the ordinary least squares technique. The estimated stability and control derivatives are plotted against the angle of attack and compared with wind tunnel measurement and previous flight results. Also included is the data compatibility check of measured data. The effect of various input forms on the estimates is demonstrated in two examples using simulated data.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-101631 , NAS 1.15:101631
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.
    Keywords: Research and Support Facilities (Air)
    Type: NASA/TM-2003-212116 , E-13768 , NAS 1.15:212116 , AIAA Paper 2003-0022 , 41st Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 09, 2003; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The effects of tailplane icing on aircraft dynamics and tailplane aerodynamics were investigated using, NASA's modified DHC-6 Twin Otter icing research aircraft. This flight program was a major element of the four-year NASA/FAA research program that also included icing wind tunnel testing, dry-air aerodynamic wind tunnel testing, and analytical code development. Flight tests were conducted to obtain aircraft dynamics and tailplane aerodynamics of the DHC-6 with four tailplane leading-edge configurations. These configurations included a clean (baseline) and three different artificial ice shapes. Quasi-steady and various dynamic flight maneuvers were performed over the full range of angles of attack and wing flap settings with each iced tailplane configuration. This paper presents results from the quasi-steady state flight conditions and describes the range of flow fields at the horizontal tailplane, the aeroperformance effect of various ice shapes on tailplane lift and elevator hinge moment, and suggests three paths that can lead toward ice-contaminated tailplane stall. It was found that wing, flap deflection was the most significant factor in driving the tailplane angle of attack toward alpha(tail stall). However, within a given flap setting, an increase in airspeed also drove the tailplane angle of attack toward alpha(tail stall). Moreover, increasing engine thrust setting also pushed the tailplane to critical performance limits, which resulted in premature tailplane stall.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-1999-208902 , E-11503 , NAS 1.15:208902 , AIAA Paper 99-0638 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The utility of the Icing Contamination Envelope Protection (ICEPro) system for mitigating a potentially hazardous icing condition was evaluated by 29 pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). ICEPro provides real time envelope protection cues and alerting messages on pilot displays. The pilots participating in this test were divided into two groups; a control group using baseline displays without ICEPro, and an experimental group using ICEPro driven display cueing. Each group flew identical precision approach and missed approach procedures with a simulated failure case icing condition. Pilot performance, workload, and survey questionnaires were collected for both groups of pilots. Results showed that real time assessment cues were effective in reducing the number of potentially hazardous upset events and in lessening exposure to loss of control following an incipient upset condition. Pilot workload with the added ICEPro displays was not measurably affected, but pilot opinion surveys showed that real time cueing greatly improved their situation awareness of a hazardous aircraft state.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2011-216951 , AIAA Paper 2010-7987 , E-17556 , Atmospheric and Space Environments Conference; Aug 02, 2010 - Aug 05, 2010; Toronto, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper-44650-413 , E-17992 , Atmospheric Flight Mechanics Conference and Exhibit; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States|Journal of Aircraft 2010 (ISSN 0021-8669); 47; 1; 201-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, generates icing clouds with a spray system. While the spray system is used mostly to create ice crystal clouds (Appendix D/P), the 2017 cloud characterization effort added the requirement to produce exactly supercooled liquid clouds in Appendix C and Appendix O. Success was demonstrated to supercool the largest drops at the warmest conditions, but not freeze out the smallest drops at the coldest conditions. This paper documents primarily the total water content characterization methodology and results from an Iso-Kinetic Probe in ice crystals and Multi-Wire sensor in supercooled liquid, along with the cloud uniformity provided by light extinction tomography. Particle size distribution results from High Speed Imaging probes and a Phase Doppler Interferometer are discussed. Also, a new numerical model for tracking the thermodynamics of the air-drop interactions in PSL from the plenum toward the cloud characterization plane are noted. Both of these latter topic are more fully documented in companion papers.
    Keywords: Research and Support Facilities (Air)
    Type: GRC-E-DAA-TN57012 , AIAA AVIATION Forum; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystals clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.
    Keywords: Meteorology and Climatology
    Type: GRC-E-DAA-TN69115 , SAE International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.
    Keywords: Aerodynamics
    Type: NASA/TM-2012-217684 , E-18367 , AIAA Paper 2010-7986 , Atmospheric and Space Environments Conference; Aug 02, 2010 - Aug 05, 2010; Toronto, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...