ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.
    Keywords: Acoustics
    Type: NF1676L-16566 , 161st Meeting of the Acoustical Society of America; May 23, 2011 - May 27, 2011; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (〈20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.
    Keywords: Acoustics
    Type: Paprt No. NC12_198 , NF1676L-15786 , Noise-Con 2013 2013; Aug 26, 2013 - Aug 28, 2013; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A sonic boom simulator has been constructed at NASA Langley Research Center for testing the human response to sonic booms heard indoors. Like all measured quantities, sonic boom levels in the simulator are subject to systematic and random errors. To quantify these errors, and their net influence on the measurement result, a formal uncertainty analysis is conducted. Knowledge of the measurement uncertainty, or range of values attributable to the quantity being measured, enables reliable comparisons among measurements at different locations in the simulator as well as comparisons with field data or laboratory data from other simulators. The analysis reported here accounts for acoustic excitation from two sets of loudspeakers: one loudspeaker set at the facility exterior that reproduces the exterior sonic boom waveform and a second set of interior loudspeakers for reproducing indoor rattle sounds. The analysis also addresses the effect of pressure fluctuations generated when exterior doors of the building housing the simulator are opened. An uncertainty budget is assembled to document each uncertainty component, its sensitivity coefficient, and the combined standard uncertainty. The latter quantity will be reported alongside measurement results in future research reports to indicate data reliability.
    Keywords: Acoustics
    Type: NF1676L-14250 , INTER-NOISE 2012; Aug 19, 2012 - Aug 22, 2012; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A sonic-boom simulator at NASA Langley Research Center has been constructed to research the indoor human response to low-amplitude sonic booms. The research goal is the development of a psychoacoustic model for individual sonic booms to be validated by future community studies. The study in this report assessed the suitability of existing noise metrics for predicting indoor human annoyance. The test signals included a wide range of synthesized and recorded sonic-boom waveforms. Results indicated that no noise metric predicts indoor annoyance to sonic-boom sounds better than Perceived Level, PL. During the study it became apparent that structural vibrations induced by the test signals were contributing to annoyance, so the relationship between sound and vibration at levels of equivalent annoyance has been quantified.
    Keywords: Acoustics
    Type: NASA/TM-2012-217332 , L-20108 , NF1676L-14072
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Human response to sonic booms heard indoors is affected by the generation of contact-induced rattle noise. The annoyance caused by sonic boom-induced rattle noise was studied in a series of psychoacoustics tests. Stimuli were divided into three categories and presented in three different studies: isolated rattles at the same calculated Perceived Level (PL), sonic booms combined with rattles with the mixed sound at a single PL, and sonic booms combined with rattles with the mixed sound at three different PL. Subjects listened to sounds over headphones and were asked to report their annoyance. Annoyance to different rattles was shown to vary significantly according to rattle object size. In addition, the combination of low-amplitude sonic booms and rattles can be more annoying than the sonic boom alone. Correlations and regression analyses for the combined sonic boom and rattle sounds identified the Moore and Glasberg Stationary Loudness (MGSL) metric as a primary predictor of annoyance for the tested sounds. Multiple linear regression models were developed to describe annoyance to the tested sounds, and simplifications for applicability to a wider range of sounds are presented.
    Keywords: Acoustics
    Type: NASA/TM-2013-217975 , L-20217 , NF1676L-15887
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.
    Keywords: Statistics and Probability; Acoustics
    Type: NF1676L-24009 , Statistical Engineering Knowledge Exchange Workshop; Apr 11, 2016 - Apr 13, 2016; Crystal City, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: One goal of NASAs Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.
    Keywords: Acoustics
    Type: NF1676L-20617 , International Symposium on Nonlinear Acoustics; Jun 29, 2015 - Jul 03, 2015; Lyon; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.
    Keywords: Acoustics
    Type: NF1676L-22771 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.
    Keywords: Acoustics
    Type: NF1676L-23460 , Spring 2016 Meeting Acoustical Society of America; May 23, 2016 - May 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Adaptive psychoacoustic test methods, in which the next signal level depends on the response to the previous signal, are the most efficient for determining psychoacoustic thresholds of individual subjects. In many tests conducted in the NASA psychoacoustic labs, the goal is to determine thresholds representative of the general population. To do this economically, non-adaptive testing methods are used in which three or four subjects are tested at the same time with predetermined signal levels. This approach requires us to identify techniques for assessing the uncertainty in resulting group-average psychoacoustic thresholds. In this presentation we examine the Delta Method of frequentist statistics, the Generalized Linear Model (GLM), the Nonparametric Bootstrap, a frequentist method, and Markov Chain Monte Carlo Posterior Estimation and a Bayesian approach. Each technique is exercised on a manufactured, theoretical dataset and then on datasets from two psychoacoustics facilities at NASA. The Delta Method is the simplest to implement and accurate for the cases studied. The GLM is found to be the least robust, and the Bootstrap takes the longest to calculate. The Bayesian Posterior Estimate is the most versatile technique examined because it allows the inclusion of prior information.
    Keywords: Behavioral Sciences; Acoustics
    Type: NF1676L-23510 , Spring 2016 Meeting of the Acoustical Society of America; May 23, 2016 - May 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...