ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-20
    Description: We present the first global ocean‐biogeochemistry model that uses a telescoping high resolution for an improved representation of coastal carbon dynamics: ICON‐Coast. Based on the unstructured triangular grid topology of the model, we globally apply a grid refinement in the land‐ocean transition zone to better resolve the complex circulation of shallow shelves and marginal seas as well as ocean‐shelf exchange. Moreover, we incorporate tidal currents including bottom drag effects, and extend the parameterizations of the model's biogeochemistry component to account explicitly for key shelf‐specific carbon transformation processes. These comprise sediment resuspension, temperature‐dependent remineralization in the water column and sediment, riverine matter fluxes from land including terrestrial organic carbon, and variable sinking speed of aggregated particulate matter. The combination of regional grid refinement and enhanced process representation enables for the first time a seamless incorporation of the global coastal ocean in model‐based Earth system research. In particular, ICON‐Coast encompasses all coastal areas around the globe within a single, consistent ocean‐biogeochemistry model, thus naturally accounting for two‐way coupling of ocean‐shelf feedback mechanisms at the global scale. The high quality of the model results as well as the efficiency in computational cost and storage requirements proves this strategy a pioneering approach for global high‐resolution modeling. We conclude that ICON‐Coast represents a new tool to deepen our mechanistic understanding of the role of the land‐ocean transition zone in the global carbon cycle, and to narrow related uncertainties in global future projections.
    Description: Plain Language Summary: The coastal ocean is an area hardly taken into account by current climate change assessment activities. Yet, its capacity in carbon dioxide (CO2) uptake and storage is crucial to be included in a science‐based development of sustainable climate change mitigation and adaptation strategies. Earth system models are powerful tools to investigate the marine carbon cycle of the open ocean. The coastal ocean, however, is poorly represented in global models to date, because of missing key processes controlling coastal carbon dynamics and too coarse spatial resolutions to adequately simulate coastal circulation features. Here, we introduce the first global ocean‐biogeochemistry model with a dedicated representation of the coastal ocean and associated marine carbon dynamics: ICON‐Coast. In this model, we globally apply a higher resolution in the coastal ocean and extend the accounted physical and biogeochemical processes. This approach enables for the first time a consistent, seamless incorporation of the global coastal ocean in model‐based Earth system research. In particular, ICON‐Coast represents a new tool to deepen our understanding about the role of the land‐ocean transition zone in the global climate system, and to narrow related uncertainties in possible and plausible climate futures.
    Description: Key Points: We introduce the first global ocean‐biogeochemistry model with a dedicated representation of coastal carbon dynamics. We globally apply a grid refinement in the coastal ocean to better resolve regional circulation features, including ocean‐shelf exchange. We explicitly incorporate key physical and biogeochemical processes controlling coastal carbon dynamics.
    Description: German Research Foundation, Excellence Strategy EXC 2037 (CLICCS)
    Description: European Union, Horizon2020 Research and Innovation Program (ESM2025)
    Description: German Federal Ministry of Education
    Description: https://doi.org/10.5281/zenodo.6630352
    Keywords: ddc:551 ; coastal ocean ; global modeling ; marine carbon cycle ; variable‐resolution grid ; ocean‐biogiochemistry ; high‐resolution modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-05
    Description: This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution.
    Description: Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. This article describes how the component models for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model by running a set of experiments under pre‐industrial and historical climate conditions as well as a set of idealized greenhouse‐gas‐increase experiments. These experiments were designed by the Coupled Model Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose overall satisfactory performance, we find that ICON‐ESM features somewhat larger biases in several quantities compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves as a basis from where future development steps will open up new perspectives in earth system modeling.
    Description: Key Points: This work documents ICON‐ESM 1.0, the first version of a coupled model based on the ICON framework. Performance of ICON‐ESM is assessed by means of CMIP6 Diagnosis, Evaluation, and Characterization of Klima experiments at standard CMIP‐type resolution. ICON‐ESM reproduces the observed temperature evolution. Biases in clouds, winds, sea‐ice, and ocean properties are larger than in MPI‐ESM.
    Description: European Union H2020 ESM2025
    Description: European Union H2020 COMFORT
    Description: European Union H2020ESiWACE2
    Description: Deutsche Forschungsgemeinschaft TRR181
    Description: Deutsche Forschungsgemeinschaft EXC 2037
    Description: European Union H2020
    Description: Deutscher Wetterdienst
    Description: Bundesministerium fuer Bildung und Forschung
    Description: http://esgf-data.dkrz.de/search/cmip6-dkrz/
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model
    Keywords: ddc:550.285 ; ddc:551.63
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...