ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-01-30
    Print ISSN: 1126-6708
    Electronic ISSN: 1029-8479
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-28
    Description: The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677224/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677224/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Devendra -- Chan, Joseph Minhow -- Zoppoli, Pietro -- Niola, Francesco -- Sullivan, Ryan -- Castano, Angelica -- Liu, Eric Minwei -- Reichel, Jonathan -- Porrati, Paola -- Pellegatta, Serena -- Qiu, Kunlong -- Gao, Zhibo -- Ceccarelli, Michele -- Riccardi, Riccardo -- Brat, Daniel J -- Guha, Abhijit -- Aldape, Ken -- Golfinos, John G -- Zagzag, David -- Mikkelsen, Tom -- Finocchiaro, Gaetano -- Lasorella, Anna -- Rabadan, Raul -- Iavarone, Antonio -- 1R01LM010140-01/LM/NLM NIH HHS/ -- R01 CA085628/CA/NCI NIH HHS/ -- R01 CA101644/CA/NCI NIH HHS/ -- R01 CA127643/CA/NCI NIH HHS/ -- R01 CA131126/CA/NCI NIH HHS/ -- R01 LM010140/LM/NLM NIH HHS/ -- R01 NS061776/NS/NINDS NIH HHS/ -- R01CA085628/CA/NCI NIH HHS/ -- R01CA101644/CA/NCI NIH HHS/ -- R01CA127643/CA/NCI NIH HHS/ -- R01CA131126/CA/NCI NIH HHS/ -- R01NS061776/NS/NINDS NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 CA121852-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1231-5. doi: 10.1126/science.1220834. Epub 2012 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837387" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Animals ; Antineoplastic Agents/pharmacology ; Benzamides/pharmacology ; Brain Neoplasms/genetics/metabolism ; *Cell Transformation, Neoplastic ; Chromosomal Instability ; Enzyme Inhibitors/pharmacology ; Fetal Proteins/chemistry/*genetics/metabolism ; Glioblastoma/*genetics/metabolism ; Humans ; Mice ; Microtubule-Associated Proteins/chemistry/*genetics/metabolism ; Mitosis ; Neoplasm Transplantation ; Nuclear Proteins/chemistry/*genetics/metabolism ; Oncogene Fusion ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Piperazines/pharmacology ; Protein Structure, Tertiary ; Pyrazoles/pharmacology ; Pyrimidines/pharmacology ; Receptor, Fibroblast Growth Factor, Type 1/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Receptor, Fibroblast Growth Factor, Type 3/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Spindle Apparatus/metabolism ; Translocation, Genetic ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-11
    Description: B-cell non-Hodgkin's lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types--follicular lymphoma and diffuse large B-cell lymphoma--harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin's lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271441/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271441/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pasqualucci, Laura -- Dominguez-Sola, David -- Chiarenza, Annalisa -- Fabbri, Giulia -- Grunn, Adina -- Trifonov, Vladimir -- Kasper, Lawryn H -- Lerach, Stephanie -- Tang, Hongyan -- Ma, Jing -- Rossi, Davide -- Chadburn, Amy -- Murty, Vundavalli V -- Mullighan, Charles G -- Gaidano, Gianluca -- Rabadan, Raul -- Brindle, Paul K -- Dalla-Favera, Riccardo -- 1R01LM010140-01/LM/NLM NIH HHS/ -- DE018183/DE/NIDCR NIH HHS/ -- P01 CA092625/CA/NCI NIH HHS/ -- P01 CA092625-05/CA/NCI NIH HHS/ -- P01-CA092625/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01-CA37295/CA/NCI NIH HHS/ -- R37 CA037295/CA/NCI NIH HHS/ -- R37 CA037295-28/CA/NCI NIH HHS/ -- U54-AI057158/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Mar 10;471(7337):189-95. doi: 10.1038/nature09730.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA. lp171@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21390126" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Acetylation ; Acetyltransferases/chemistry/deficiency/*genetics/*metabolism ; Animals ; Base Sequence ; CREB-Binding Protein/chemistry/deficiency/*genetics/metabolism ; Cells, Cultured ; DNA-Binding Proteins/metabolism ; E1A-Associated p300 Protein/chemistry/deficiency/*genetics/metabolism ; Gene Expression Regulation, Neoplastic ; HEK293 Cells ; Histone Acetyltransferases/chemistry/deficiency/genetics/metabolism ; Humans ; Lymphoma, B-Cell/*enzymology/*genetics/pathology ; Lymphoma, Follicular/enzymology/genetics/pathology ; Lymphoma, Large B-Cell, Diffuse/enzymology/genetics/pathology ; Mice ; Mutation/*genetics ; Mutation, Missense/genetics ; Polymorphism, Single Nucleotide/genetics ; Protein Binding ; Protein Structure, Tertiary/genetics ; Recurrence ; Sequence Deletion/genetics ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-17
    Description: Cells of the osteoblast lineage affect the homing and the number of long-term repopulating haematopoietic stem cells, haematopoietic stem cell mobilization and lineage determination and B cell lymphopoiesis. Osteoblasts were recently implicated in pre-leukaemic conditions in mice. However, a single genetic change in osteoblasts that can induce leukaemogenesis has not been shown. Here we show that an activating mutation of beta-catenin in mouse osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukaemia with common chromosomal aberrations and cell autonomous progression. Activated beta-catenin stimulates expression of the Notch ligand jagged 1 in osteoblasts. Subsequent activation of Notch signalling in haematopoietic stem cell progenitors induces the malignant changes. Genetic or pharmacological inhibition of Notch signalling ameliorates acute myeloid leukaemia and demonstrates the pathogenic role of the Notch pathway. In 38% of patients with myelodysplastic syndromes or acute myeloid leukaemia, increased beta-catenin signalling and nuclear accumulation was identified in osteoblasts and these patients showed increased Notch signalling in haematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce acute myeloid leukaemia, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kode, Aruna -- Manavalan, John S -- Mosialou, Ioanna -- Bhagat, Govind -- Rathinam, Chozha V -- Luo, Na -- Khiabanian, Hossein -- Lee, Albert -- Murty, Vundavalli V -- Friedman, Richard -- Brum, Andrea -- Park, David -- Galili, Naomi -- Mukherjee, Siddhartha -- Teruya-Feldstein, Julie -- Raza, Azra -- Rabadan, Raul -- Berman, Ellin -- Kousteni, Stavroula -- P01 AG032959/AG/NIA NIH HHS/ -- P30 DK063608/DK/NIDDK NIH HHS/ -- R01 AR054447/AR/NIAMS NIH HHS/ -- R01 AR055931/AR/NIAMS NIH HHS/ -- T32 GM082797/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Feb 13;506(7487):240-4. doi: 10.1038/nature12883. Epub 2014 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Genetics and Development College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Biomedical Informatics and Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, USA. ; Department of Pathology & Institute for Cancer Genetics Irving Cancer Research Center, Columbia University, New York, New York 10032, USA. ; Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA. ; 1] Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA [2] Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands. ; Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA. ; Myelodysplastic Syndromes Center, Columbia University New York, New York 10032, USA. ; Departments of Medicine Hematology & Oncology Columbia University New York, New York 10032, USA. ; Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA. ; 1] Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA [2] Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24429522" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia/genetics/metabolism/pathology ; Animals ; Base Sequence ; Calcium-Binding Proteins/deficiency/genetics/metabolism ; Cell Differentiation/genetics ; Cell Lineage ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic/*genetics/pathology ; Chromosome Aberrations ; Female ; Hematopoietic Stem Cells/metabolism/pathology ; Humans ; Intercellular Signaling Peptides and Proteins/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*genetics/metabolism/*pathology ; Ligands ; Male ; Membrane Proteins/deficiency/genetics/metabolism ; Mice ; Mutation/*genetics ; Myelodysplastic Syndromes/genetics/metabolism/pathology ; Myeloid Cells/metabolism/pathology ; Osteoblasts/*metabolism/pathology/secretion ; Receptors, Notch/metabolism ; Signal Transduction ; Tumor Microenvironment/genetics ; beta Catenin/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-15
    Description: The vast majority of the mammalian genome has the potential to express noncoding RNA (ncRNA). The 11-subunit RNA exosome complex is the main source of cellular 3'-5' exoribonucleolytic activity and potentially regulates the mammalian noncoding transcriptome. Here we generated a mouse model in which the essential subunit Exosc3 of the RNA exosome complex can be conditionally deleted. Exosc3-deficient B cells lack the ability to undergo normal levels of class switch recombination and somatic hypermutation, two mutagenic DNA processes used to generate antibody diversity via the B-cell mutator protein activation-induced cytidine deaminase (AID). The transcriptome of Exosc3-deficient B cells has revealed the presence of many novel RNA exosome substrate ncRNAs. RNA exosome substrate RNAs include xTSS-RNAs, transcription start site (TSS)-associated antisense transcripts that can exceed 500 base pairs in length and are transcribed divergently from cognate coding gene transcripts. xTSS-RNAs are most strongly expressed at genes that accumulate AID-mediated somatic mutations and/or are frequent translocation partners of DNA double-strand breaks generated at Igh in B cells. Strikingly, translocations near TSSs or within gene bodies occur over regions of RNA exosome substrate ncRNA expression. These RNA exosome-regulated, antisense-transcribed regions of the B-cell genome recruit AID and accumulate single-strand DNA structures containing RNA-DNA hybrids. We propose that RNA exosome regulation of ncRNA recruits AID to single-strand DNA-forming sites of antisense and divergent transcription in the B-cell genome, thereby creating a link between ncRNA transcription and overall maintenance of B-cell genomic integrity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372240/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372240/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pefanis, Evangelos -- Wang, Jiguang -- Rothschild, Gerson -- Lim, Junghyun -- Chao, Jaime -- Rabadan, Raul -- Economides, Aris N -- Basu, Uttiya -- 1DP2OD008651-01/OD/NIH HHS/ -- 1R01AI099195-01A1/AI/NIAID NIH HHS/ -- 1R01CA179044-01A1/CA/NCI NIH HHS/ -- 1R01CA185486-01/CA/NCI NIH HHS/ -- 1U54CA121852-05/CA/NCI NIH HHS/ -- DP2 OD008651/OD/NIH HHS/ -- R01 AI099195/AI/NIAID NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- England -- Nature. 2014 Oct 16;514(7522):389-93. doi: 10.1038/nature13580. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [2] Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA [3]. ; 1] Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [2] Department of Systems Biology and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [3]. ; 1] Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [2]. ; Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Systems Biology and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*metabolism ; Base Pairing ; Cytidine Deaminase/*metabolism ; DNA Breaks, Double-Stranded ; DNA, Single-Stranded/chemistry/genetics/metabolism ; Exosome Multienzyme Ribonuclease Complex/deficiency/genetics ; Exosomes/metabolism ; Female ; Genome/genetics ; Genomic Instability/genetics ; Immunoglobulin Class Switching/genetics ; Immunoglobulin Heavy Chains/genetics ; Male ; Mice ; Nucleic Acid Hybridization ; RNA, Antisense/biosynthesis/chemistry/genetics/metabolism ; RNA, Untranslated/*biosynthesis/chemistry/*genetics/metabolism ; RNA-Binding Proteins/genetics ; Somatic Hypermutation, Immunoglobulin/genetics ; Substrate Specificity ; Transcription Initiation Site ; Transcription, Genetic/*genetics ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-19
    Print ISSN: 1550-7998
    Electronic ISSN: 1550-2368
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-10-12
    Print ISSN: 1126-6708
    Electronic ISSN: 1029-8479
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-29
    Description: Viruses have an extraordinary ability to diversify and evolve. For segmented viruses, reassortment can introduce drastic genomic and phenotypic changes by allowing a direct exchange of genetic material between coinfecting strains. For instance, multiple influenza pandemics were caused by reassortments of viruses typically found in separate hosts. What is unclear, however, are the underlying mechanisms driving these events and the level of intrinsic bias in the diversity of strains that emerge from coinfection. To address this problem, previous experiments looked for correlations between segments of strains that coinfect cells in vitro. Here, we present an information theory approach as the natural mathematical framework for this question. We study, for influenza and other segmented viruses, the extent to which a virus’s segments can communicate strain information across an infection and among one another. Our approach goes beyond previous association studies and quantifies how much the diversity of emerging strains is altered by patterns in reassortment, whether biases are consistent across multiple strains and cell types, and if significant information is shared among more than two segments. We apply our approach to a new experiment that examines reassortment patterns between the 2009 H1N1 pandemic and seasonal H1N1 strains, contextualizing its segmental information sharing by comparison with previously reported strain reassortments. We find evolutionary patterns across classes of experiments and previously unobserved higher-level structures. Finally, we show how this approach can be combined with virulence potentials to assess pandemic threats.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...