ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2016-08-05
    Description: Cynomoriaceae, one of the last unplaced families of flowering plants, comprise one or two species or subspecies of root parasites that occur from the Mediterranean to the Gobi Desert. Using Illumina sequencing, we assembled the mitochondrial and plastid genomes as well as some nuclear genes of a Cynomorium specimen from Italy. Selected genes were also obtained by Sanger sequencing from individuals collected in China and Iran, resulting in matrices of 33 mitochondrial, 6 nuclear, and 14 plastid genes and rDNAs enlarged to include a representative angiosperm taxon sampling based on data available in GenBank. We also compiled a new geographic map to discern possible discontinuities in the parasites’ occurrence. Cynomorium has large genomes of 13.70–13.61 (Italy) to 13.95–13.76 pg (China). Its mitochondrial genome consists of up to 49 circular subgenomes and has an overall gene content similar to that of photosynthetic angiosperms, while its plastome retains only 27 of the normally 116 genes. Nuclear, plastid and mitochondrial phylogenies place Cynomoriaceae in Saxifragales, and we found evidence for several horizontal gene transfers from different hosts, as well as intracellular gene transfers.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-11
    Description: Author(s): L. Wang, Y. Cai, A. M. He, and S. N. Luo Premelting or virtual melting was proposed previously as an important deformation mechanism for high strain-rate loading. However, two questions remain outstanding: how premelting occurs exactly, and whether it plays a role in plastic deformation independent of, parasitic on, or synergetic with, dis… [Phys. Rev. B 93, 174106] Published Tue May 10, 2016
    Keywords: Structure, structural phase transitions, mechanical properties, defects
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-08
    Description: Real time, in situ , multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-06
    Description: With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-07
    Description: With molecular dynamics simulations, we systematically investigate melting of a set of Σ3〈110〉70.53° tilt grain boundaries (GB) in Cu bicrystals, including coherent twin boundaries (CTBs), 12 asymmetric tilt grain boundaries (ATGBs), and symmetric incoherent twin boundaries (SITBs), in the order of increasing length weight of SITB or GB energy. ATGBs decompose into CTBs and SITBs, which migrate and coalesce as a result of internal stress relaxation. GBs can be superheated or premelted, and GB melting temperature decreases exponentially with increasing SITB weight, owing to the systematics in GB microstructure. GB melting nucleates at disordered CTB-SITB junctions, and grows along SITBs and then into grain interiors, with the solid-liquid interfaces preferentially aligned with {111}.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-25
    Description: ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells Cell Death and Disease 7, e2157 (March 2016). doi:10.1038/cddis.2015.401 Authors: N Luo, J Guo, L Chen, W Yang, X Qu & Z Cheng
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-14
    Description: Author(s): Y. Cai, L. Wang, H. A. Wu, M. H. Zhu, C. L. Liu, and S. N. Luo Shock-induced freezing in liquids has long been a subject of interest as well as mystery. With large-scale molecular dynamics simulations, we demonstrate that homogeneous crystal nucleation in liquid Cu can be realized under effective supercooling ( θ ) , via quasi-isentropic compression or ramp wave l… [Phys. Rev. B 92, 014108] Published Mon Jul 13, 2015
    Keywords: Structure, structural phase transitions, mechanical properties, defects
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-17
    Description: We investigate shock-induced melting in honeycomb-shaped Cu nanofoams with extensive molecular dynamics simulations. A total of ten porosities ( ϕ ) are explored, ranging from 0 to 0.9 at an increment of 0.1. Upon shock compression, void collapse leads to local melting followed by supercooling at low shock strengths. Superheating occurs at ϕ ≤ 0.1 . Both supercooling of melts and superheating of solid remnants are transient, and the equilibrated shock states eventually fall on the equilibrium melting curve for partial melting. However, phase equilibrium has not been achieved on the time scale of simulations in supercooled Cu liquid (from completely melted nanofoams). The temperatures for incipient and complete melting are related to porosity via a power law, ( 1 − ϕ ) k , and approach the melting temperature at zero pressure as ϕ → 1 .
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-21
    Description: We present a study of the excitation conditions and metallicity of ionized gas ( Z gas ) in eight nearby barred and unbarred spiral galaxies from the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey, which provides high spatial sampling and resolution (median ~387 pc), large coverage from the bulge to outer disc, broad wavelength range (3600–6800 Å), and medium spectral resolution (~120 km s –1 at 5000 Å). Our results are: (1) We present high resolution gas excitation maps to differentiate between regions with excitation typical of Seyfert, LINER, or recent star formation. We find LINER-type excitation at large distances (3–10 kpc) from the centre, and associate this excitation with diffuse ionized gas (DIG). (2) After excluding spaxels dominated by Seyfert, LINER, or DIG, we produce maps with the best spatial resolution and sampling to date of the ionization parameter q , star formation rate, and Z gas using common strong line diagnostics. We find that isolated barred and unbarred spirals exhibit similarly shallow Z gas profiles from the inner kpc out to large radii (7–10 kpc or 0.5–1.0 R 25 ). This implies that if profiles had steeper gradients at earlier epochs, then the present-day bar is not the primary driver flattening gradients over time. This result contradicts earlier claims, but agrees with recent IFU studies. (3) The Z gas gradients in our z ~ 0 massive spirals are markedly shallower, by ~0.2 dex kpc –1 , than published gradients for lensed lower mass galaxies at z ~ 1.5–2.0. Cosmologically motivated hydrodynamical simulations best match this inferred evolution, but the match is sensitive to adopted stellar feedback prescriptions.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-23
    Description: We investigate the effects of porosity or relative mass density and specific surface area on shock response of open-cell nanoporous Cu foams with molecular dynamics simulations, including compression, shock velocity–particle velocity, and shock temperature curves, as well as shock-induced melting. While porosity still plays the key role in shock response, specific surface area at nanoscales can have remarkable effects on shock temperature and pressure, but its effects on shock velocity and specific volume are negligible. Shock-induced melting of nanofoams still follows the equilibrium melting curve for full-density Cu, and the incipient and complete melting temperatures are established as a function of both relative mass density and specific surface area.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...