ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 27; 679-691
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AGARD, Effects of Adverse Weather on Aerodynamics; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An effort to develop a 3-D ice accretion modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating 3-D flow fields and particle trajectories combined with a 2-D ice accretion calculation along coordinate locations corresponding to streamlines. The types of calculations necessary to predict three-dimensional ice accretion is demonstrated. Results of calculations using 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane parallel to the free stream direction and compared to experimental results for the same geometry. It is anticipated that many modifications will be made to this approach, however, this effort will lay the groundwork for future modeling efforts. Results indicate that rime ice shapes indicate a difficulty in accurately calculating the ice shape in the runback region.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AIAA PAPER 91-0263
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: An effort to develop a three-dimensional ice accretion modeling method is initiated. This first step toward creation of a complete aircraft icing simulation code builds on previously developed methods for calculating three-dimensional flowfields and particle trajectories combined with a two-dimensional ice accretion calculation along coordinate locations corresponding to streamlines. This work is intended as a demonstration of the types of calculations necessary to predict a three-dimensional ice accretion. Results of calculations using the 3D method for a MS-317 swept wing geometry are projected onto a 2D plane normal to the wing leading edge and compared to 2D results for the same geometry. These results indicate that the flowfield over the surface and the particle trajectories differed for the two calculations. This led to lower collection efficiencies, convective heat transfer coefficients, freezing fractions, and ultimately ice accumulation for the 3D calculation.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 90-0756
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AGARD, Effects of Adverse Weather on Aerodynamics; 27 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A method is being developed for evaluation of the flow field behavior about an airfoil with significant ice accretion on the leading edge. The computer code, being evaluated for this purpose, solves the Navier-Stokes equations in a body-fitted curvilinear coordinate system. This requires the use of a grid generation code to transform the x-y coordinates of the physical space into xi-eta coordinates of the computational space. Evaluation of the suitability of these two codes for predicting iced airfoil performance is presently being carried out in anticipation of use in an overall icing analysis effort. Results of this evaluation to date indicate good correlation with known information on clean airfoils. Preliminary results for rime and glaze, iced airfoil shapes are also presented.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 85-0410
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The cause and effects of roughness on accreting glaze ice surfaces were studied with microvideo observations. Distinct zones of surface water behavior were observed, including a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where roughness elements grow into horn shapes. In addition, a zone where surface water ran back as rivulets and a dry zone where rime feathers formed were observed. The locations and behaviors of these zones are discussed. A simple multizone modification to the glaze ice accretion model is proposed to include spatial variability in surface roughness. Two test cases using the multizone model showed significant improvements for the prediction of glaze ice shapes.
    Keywords: AIR TRANSPORTATION AND SAFETY
    Type: AIAA PAPER 89-0734
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An analytical study was performed as part of the NASA Lewis support of a National Transportation Safety Board (NTSB) aircraft accident investigation. The study was focused on the performance degradation associated with ice contamination on the wing of a commercial turbo-prop-powered aircraft. Based upon the results of an earlier numerical study conducted by the authors, a prominent ridged-ice formation on the subject aircraft wing was selected for detailed flow analysis using 2-dimensional (2-D), as well as, 3-dimensional (3-D) Navier-Stokes computations. This configuration was selected because it caused the largest lift decrease and drag increase among all the ice shapes investigated in the earlier study. A grid sensitivity test was performed to find out the influence of grid spacing on the lift, drag, and associated angle-of-attack for the maximum lift (C(sub lmax)). This study showed that grid resolution is important and a sensitivity analysis is an essential element of the process in order to assure that the final solution is independent of the grid. The 2-D results suggested that a severe stability and control difficulty could have occurred at a slightly higher angle-of-attack (AOA) than the one recorded by the Flight Data Recorder (FDR). This stability and control problem was thought to have resulted from a decreased differential lift on the wings with respect to the normal loading for the configuration. The analysis also indicated that this stability and control problem could have occurred whether or not natural ice shedding took place. Numerical results using an assumed 3-D ice shape showed an increase of the angle at which this phenomena occurred of about 4 degrees. As it occurred with the 2-D case, the trailing edge separation was observed but started only when the AOA was very close to the angle at which the maximum lift occurred.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-208897 , NAS 1.15:208897 , AIAA Paper 99-0375 , ICOMP-99-03 , E-11496 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In September 1997 the National Transportation Safety Board (NTSB) requested assistance from the NASA Lewis Research Center (LeRC) Icing Branch in the investigation of an aircraft accident that was suspected of being caused by ice contamination. In response to the request NASA agreed to perform an experimental and computational study. The main activities that NASA performed were LERC Icing Research Tunnel (IRT) testing to define ice shapes and 2-D Navier-Stokes analysis to determine the performance degradation that those ice shapes would have caused. An IRT test was conducted in January 1998. Most conditions for the test were based upon raw and derived data from the Flight Data Recorder (FDR) recovered from the accident and upon the current understanding of the Meteorological conditions near the accident. Using a two-dimensional Navier-Stokes code, the flow field and resultant lift and drag were calculated for the wing section with various ice shapes accreted in the IRT test. Before the final calculations could be performed extensive examinations of geometry smoothing and turbulence were conducted. The most significant finding of this effort is that several of the five-minute ice accretions generated in the IRT were found by the Navier-Stokes analysis to produce severe lift and drag degradation. The information generated by this study suggests a possible scenario for the kind of control upset recorded in the accident. Secondary findings were that the ice shapes accreted in the IRT were mostly limited to the protected pneumatic boot region of the wing and that during testing, activation of the pneumatic boots cleared most of the ice.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-1999-208896 , E-11495 , NAS 1.15:208896 , ICOMP-99-02 , AIAA Paper 99-0374 , Aerospace Sciences; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.
    Keywords: AERODYNAMICS
    Type: NASA-TM-104366 , E-6164 , NAS 1.15:104366 , Fluid Dynamics Panel Specialists Meeting; Apr 29, 1991 - May 01, 1991; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...