ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Numerous researchers have proposed the use of robotic aerial explorers to perform scientific investigation of planetary bodies in our solar system. One of the essential tasks for any aerial explorer is to be able to perform scientifically valuable imaging surveys. The focus of this paper is to discuss the challenges implicit in, and recent observations related to, acquiring mission-representative imaging data from a small fixed-wing UAV, acting as a surrogate planetary aerial explorer. This question of successfully performing aerial explorer surveys is also tied to other topics of technical investigation, including the development of unique bio-inspired technologies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Society for Optical Engineering, 16th International Symposium; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: Orbit stability has been thoughtfully studied in various celestial bodies. In particular the focus has been placed on the Moon, due to the unstable natural perturbations of its gravity field. The increasing interest in Mars orbiters brings the question of the likelihood of natural decay in low altitude regimes. This paper studies the change in shape of low altitude Mars orbits by carrying out large sets of numerical high fidelity simulations. Results showed that various configurations of the orbital elements gave perturbations that result-ed in unstable orbits. The paper also studies the potential causes of the observed unstable regions. First by taking a close look at zonal and tesseral harmonics to find the implications of Mars mass concentrations of the used gravity fields, and second by computing theoretical spin-orbit resonances to study their implications in the stability at low altitudes.
    Keywords: Astrodynamics
    Type: ARC-E-DAA-TN61147 , AAS/AIAA Space Flight Mechanics Meeting; Jan 13, 2019 - Jan 17, 2019; Ka''anapali, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: AIAA Aerospace Sciences Meeting, Intelligent Systems II Session; Jan 01, 2004; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: The Arcus mission, proposed for NASA's 2016 Astrophysics Medium Explorer (MIDEX) announcement of opportunity, will use X-ray spectroscopy to detect previously unaccounted quantities of normal matter in the Universe. The Arcus mission design uses 4:1 lunar resonance to provide a stable orbit for visibility of widely-dispersed targets, in a low background radiation environment, above the Van Allen belts for the minimum two-year science mission. Additional ad-vantages of 4:1 resonance are long term stability without maintenance maneu-vers, eclipses under 4.5 hours, perigee radius approximately 12 Re for data download, and streamlined operational cadence with approximately 1 week orbit period.
    Keywords: Astrophysics
    Type: AAS 18-271 , ARC-E-DAA-TN60130 , AAS/AIAA Astrodynamics Specialist Conference; Aug 19, 2018 - Aug 23, 2018; Snowbird, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Arcus mission, proposed for NASA's 2016 Astrophysics Medium Explorer (MIDEX) announcement of opportunity, will use X-ray spectroscopy to detect previously unaccounted quantities of normal matter in the Universe. The Arcus mission design uses 4:1 lunar resonance to provide a stable orbit for visibility of widely-dispersed targets, in a low background radiation environment, above the Van Allen belts for the minimum two-year science mission. Additional ad-vantages of 4:1 resonance are long term stability without maintenance maneuvers, eclipses under 4.5 hours, perigee radius approximately 12 Re for data download, and streamlined operational cadence with approximately 1 week or-bit period.
    Keywords: Astrodynamics
    Type: ARC-E-DAA-TN60434 , AAS/AIAA Astrodynamics Specialist Conference; Aug 19, 2018 - Aug 23, 2018; Snowbird, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Orbit stability has been thoughtfully studied in various celestial bodies. The increasing interest in Mars orbiters brings the question of the likelihood of natural decay in low altitude regimes. This paper studies the shape change of low altitude Mars orbits by carrying out large sets of numerical high fidelity simulations. Results showed that various configurations of the orbital elements gave perturbations that resulted in unstable orbits. The paper also studies the potential causes of the observed unstable regions. We computed theoretical spin-orbit resonances to study their implications in the stability at low altitudes. The resonances were tested at different initial Longitudes of the Ascending Node (LAN) and orbit inclinations to check the potential existence of latitude/longitude implications on the stability.
    Keywords: Astrodynamics
    Type: AAS 19-379 , ARC-E-DAA-TN64608 , AAS/AIAA Space Flight Mechanics Meeting 2019; Jan 13, 2019 - Jan 17, 2019; Ka''anapali, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper describes the miniaturized X-ray telescope payload, CubeX, in the context of a lunar mission. The first part describes the payload in detail, the second part summarizes a small satellite mission concept that utilizes its compact form factor and performance. This instrument can be used for both X-ray fluorescence (XRF) imaging spectroscopy and X-ray pulsar timing-based navigation (XNAV). It combines high angular resolution (〈1 arcminutes) Miniature Wolter-I X-ray optics (MiXO) with a common focal plane consisting of high spectral resolution (〈150 eV at 1 keV) CMOS X-ray sensors and a high timing resolution (〈 1 sec) SDD X-ray sensor. This novel combination of the instruments enables both XRF measurements and XNAV operations without moving parts, in a small form factor (~116U, 〈6 kg). In this paper we illustrate one potential application for a lunar mission concept: The elemental composition of the Moon holds keys to understanding the origin and evolution of both the Moon and the Earth. X-ray fluorescence (XRF), induced either by solar X-ray flux or energetic ions, carries decisive signatures of surface elemental composition. In between XRF observations, CubeX also leverages the technology of high resolution X-ray imaging and time series measurements to conduct XNAV operations and evaluate their performance.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: ARC-E-DAA-TN57507 , Annual aIAA/USU Conference on Small Satellites; Aug 04, 2018 - Aug 09, 2018; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Dark Ages Radio Explorer (DARE) seeks to study the cosmic Dark Ages approximately 80 to 420 million years after the Big Bang. Observations require truly quiet radio conditions, shielded from Sun and Earth electromagnetic (EM) emissions, on the far side of the Moon. DAREs science orbit is a frozen orbit with respect to lunar gravitational perturbations. The altitude and orientation of the orbit remain nearly fixed indefinitely, maximizing science time without the need for maintenance. DAREs observation targets avoid the galactic center and enable investigation of the universes first stars and galaxies.
    Keywords: Astrodynamics
    Type: AAS 17-333 , ARC-E-DAA-TN47625 , ARC-E-DAA-TN35962 , AAS/AIAA Space Flight Mechanics Meeting; Feb 05, 2017 - Feb 09, 2017; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-21
    Description: Resolving the complex three-dimensional turbulent structures that characterize the solar wind requires contemporaneous spatially and temporally distributed measurements. HelioSwarm is a mission concept that will deploy multiple, co-orbiting satellites to use the solar wind as a natural laboratory for understanding the fundamental, universal process of plasma turbulence. The HelioSwarm transfer trajectory and science orbit use a lunar gravity assist to deliver the ESPA-class nodes attached to a large data transfer hub to a P/2 lunar resonant orbit. Once deployed in the science orbit, the free-flying, propulsive nodes use simple Cartesian relative motion patterns to establish baseline separations both along and across the solar wind flow direction.
    Keywords: Solar Physics
    Type: AAS 19-831 , ARC-E-DAA-TN72004 , AAS/AIAA Astrodynamics Specialist Conference; Aug 11, 2019 - Aug 15, 2019; Portland, ME; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...