ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, DC : American Geophysical Union
    Associated volumes
    Call number: M 03.0197 ; 5/M 03.0372
    In: Geophysical monograph
    Type of Medium: Monograph available for loan
    Pages: 315 S.
    ISBN: 0875909825
    Series Statement: Geophysical monograph 124
    Classification:
    Geochemistry
    Location: Upper compact magazine
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geochimica et Cosmochimica Acta 108 (2013): 184–201, doi:10.1016/j.gca.2013.01.022.
    Description: Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 〈0.4 wt.% total organic carbon (OC) and primarily consists of glacially-derived material that was deposited 14,900–15,900 yrs BP during the retreat of the late Quaternary Cordilleran Ice Sheet. We hypothesize this aged and exceptionally low-OC content sedimentary OM is biologically refractory, thereby limiting degradation of non-methane OM by sulfate reduction and maximizing methane consumption by sulfate-dependent AOM. A radiocarbon-based dissolved inorganic carbon (DIC) isotope mass balance model demonstrates that respired DIC in sediment pore fluids is derived from a fossil carbon source that is devoid of 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.
    Description: Partial support for this research was provided by Interagency Agreements DE-FE0002911 and DE-NT0006147 between the US Geological Survey Gas Hydrates Project and the US Department of Energy’s Methane Hydrates Research and Development Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2001. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 67 (2001): 1922-1934, doi:10.1128/AEM.67.4.1922-1934.2001.
    Description: The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of delta -proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.
    Description: Funding for this project was provided by the David and Lucile Packard Foundation and a NASA isotopic biogeochemistry grant, NAG5-9422, to J.M.H.
    Keywords: Methane-consuming archaea ; Sulfate-reducing bacteria
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 618294 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-29
    Description: Mesozoic submarine carbonate escarpments are erosional features that host box canyons, the formation of which had been attributed to seepage erosion in view of their similarity to subaerial box canyons. The latter had been cited as diagnostic of groundwater activity, although the efficacy of fluid seepage as an erosive agent in bedrock remains controversial. Here we use multibeam echosounder data from the Blake, Campeche, Malta and Florida Escarpments to demonstrate that box canyon formation is, in general, a significant process eroding carbonate escarpments. Numerical modeling based on parameters from the Florida Escarpment shows that box canyons can initiate and retrogressively evolve by fluid seeping via joints, which causes a reduction in rock strength due to fluid pressure and dissolution, resulting in periodic block failure at the canyon head. Box canyon elongation is promoted by an exponential distribution of joint density, an increase in joint density, joints oriented perpendicular and parallel to the escarpment, or an increase in the thickness of the flowing groundwater zone and slope gradient of the escarpment. The angularity of the canyon head decreases with a decrease in joint density and when joint density is uniform, whereas the canyon width is regulated by the extent of the joint set zone. Since the key factors contributing to box canyon formation along the Florida Escarpment appear to characterize the Blake, Campeche and Malta Escarpments, the groundwater model for box canyon formation should be applicable to these escarpments as well.
    Description: Plain Language Summary: Submarine carbonate escarpments are cliffs of limestone and dolomite that form anomalously steep topography on the Earth's surface. Box canyons—wide canyons with steep walls and semi‐circular heads—are a common feature in carbonate escarpments and they have been associated with groundwater seepage. In this study, we use seafloor depth information from four carbonate escarpments to show that box canyon erosion is a key process driving their evolution. Numerical modeling, on the other hand, suggests that fluid seeping in conditions similar to those of the Florida Escarpment can result in box canyon formation via periodic failure of the canyon head. Since these conditions at the Florida Escarpment can also be found in other escarpments such as the Blake, Campeche and Malta Escarpments, box canyon formation by groundwater seepage is likely a widespread geological process. The location of box canyons may suggest where fluid is seeping along escarpments and where specialized biological communities may be located. Box canyon formation is unlikely to pose a risk to coastal communities and offshore infrastructure.
    Description: Key Points: Box canyon formation is a significant erosive process across carbonate escarpments. Fluid seeping through joints can drive initiation and retrogressive evolution of box canyons via periodic block failure at the canyon head.
    Description: EC, H2020, H2020 Priority Excellent Science, H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Description: EC, H2020, H2020 Priority Excellent Science, Marie Skłodowska‐Curie Actions
    Description: EC, FP7, FP7 Marie Curie Actions (MCA)
    Description: Fulbright Association (FULBRIGHT) http://dx.doi.org/10.13039/100010629
    Description: David and Lucile Packard Foundation (PF) http://dx.doi.org/10.13039/100000008
    Keywords: ddc:551.3
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Geochemical Exploration 95 (2007): 1-15, doi:10.1016/j.gexplo.2007.05.011.
    Description: Authigenic carbonates were sampled in piston cores collected from both the Tunica Mound and the Mississippi Canyon area on the continental slope of the northern Gulf of Mexico during a Marion Dufresne cruise in July 2002. The carbonates are present as hardgrounds, porous crusts, concretions or nodules and shell fragments with or without carbonate cements. Carbonates occurred at gas venting sites which are likely to overlie gas hydrates bearing sediments. Electron microprobe, X-ray diffraction (XRD) and thinsection investigations show that these carbonates are high-Mg calcite (6 - 21 mol % MgCO3), with significant presence of framboidal pyrite. All carbonates are depleted in 13C (δ13C = -61.9 to -31.5 ‰ PDB) indicating that the carbon is derived mainly from anaerobic methane oxidation (AMO). Age estimates based on 14C dating of shell fragments and on regional sedimentation rates indicate that these authigenic carbonates formed within the last 1,000 yr in the Mississippi Canyon and within 5,500 yr at the Tunica Mound. The oxygen isotopic composition of carbonates ranges from +3.4 to +5.9 ‰ PDB. Oxygen isotopic compositions and Mg2+ contents of carbonates, and present in-situ temperatures of bottom seawater/sediments, show that some of these carbonates, especially from a core associated with underlying massive gas hydrates precipitated in or near equilibrium with bottom-water. On the other hand, those carbonates more enriched in 18O are interpreted to have precipitated from 18O-rich fluids which are thought to have been derived from the dissociation of gas hydrates. The dissociation of gas hydrates in the northern Gulf of Mexico within the last 5,500 yr may be caused by nearby salt movement and related brines.
    Description: Financial support for this work was provided by the Grant-in-Aid from the Ministry of Education and Science and the Research Grant from JAPEX.
    Keywords: Methane-derived authigenic carbonates ; Gulf of Mexico ; High Mg-calcite ; Carbon and oxygen isotope ; Age of authigenic carbonates ; Dissociation of gas hydrates
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 715 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 385 (1997), S. 426-428 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Blake ridge is a sediment drift deposit in the Atlantic Ocean on the continental rise of North America that has strong indications for the presence of gas hydrate and free gas on the basis of seismic reflection profiles (Fig. i)2,6-8,18,19. Ocean Drilling Program (ODP) Leg 164 recently drilled ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 349 (1991), S. 229-231 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Dense biological communities living on highly sulphidized sediments found at the 3,280-m-deep base of the Florida escarpment are supported by chemosynthetic processes1'3'4 that use reduced substrates seeping from the highly jointed limestone cliff forming the edge of the Florida platform2'5 (Fig. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A mooring containing diverse carbonate and anhydrite substrates was exposed to bottom waters for 9 months at the base of the Florida Escarpment to determine the influence of dissolution on the development of this continental margin. Weight loss was measured on all samples. Etching, pitting, and loss of the original framework components were observed on substrates with known characteristics. Extrapolations of modern dissolution rates predict only about 1.6 meters of corrosion per million years. However, more rapid anhydrite dissolution, up to 1 km per million years, would cause exposed anhydrite beds to undercut and destabilize intercalated limestones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-01
    Description: New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...