ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-05
    Description: Plant stem cells in the shoot apical meristem (SAM) and root apical meristem are necessary for postembryonic development of aboveground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the Arabidopsis SAM, is a key regulatory factor controlling SAM stem cell populations, and is thought to establish the shoot stem cell niche through a feedback circuit involving the CLAVATA3 (CLV3) peptide signalling pathway. WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the root quiescent centre, defines quiescent centre identity and functions interchangeably with WUS in the control of shoot and root stem cell niches. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom and emerge as key actors in the specification and maintenance of stem cells within all meristems. However, the nature of the genetic regime in stem cell niches that centre on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM) family of transcription regulators act as conserved interacting cofactors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297503/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297503/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yun -- Liu, Xing -- Engstrom, Eric M -- Nimchuk, Zachary L -- Pruneda-Paz, Jose L -- Tarr, Paul T -- Yan, An -- Kay, Steve A -- Meyerowitz, Elliot M -- GM056006/GM/NIGMS NIH HHS/ -- GM067837/GM/NIGMS NIH HHS/ -- GM094212/GM/NIGMS NIH HHS/ -- R01 GM056006/GM/NIGMS NIH HHS/ -- R01 GM067837/GM/NIGMS NIH HHS/ -- R01 GM104244/GM/NIGMS NIH HHS/ -- RC2 GM092412/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 15;517(7534):377-80. doi: 10.1038/nature13853. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; Biology Department, College of William and Mary, Williamsburg, Virginia 23187-8795, USA. ; 1] Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA [2] Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA. ; University of Southern California, Molecular and Computational Biology, Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363783" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/genetics/*metabolism ; Arabidopsis Proteins/*metabolism ; Cell Proliferation ; *Gene Expression Regulation, Plant ; Histone Acetyltransferases/metabolism ; Homeodomain Proteins/metabolism ; Plant Shoots/cytology/genetics ; Protein Binding ; Stem Cell Niche ; Stem Cells/*cytology/*metabolism ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-05-22
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-07
    Description: The transcription factor WUSCHEL (WUS) acts from a well-defined domain within the Arabidopsis thaliana shoot apical meristem (SAM) to maintain a stem cell niche. A negative-feedback loop involving the CLAVATA (CLV) signaling pathway regulates the number of WUS-expressing cells and provides the current paradigm for the homeostatic maintenance of stem cell numbers. Despite the continual turnover of cells in the SAM during development, the WUS domain remains patterned at a fixed distance below the shoot apex. Recent work has uncovered a positive-feedback loop between WUS function and the plant hormone cytokinin. Furthermore, loss of function of the cytokinin biosynthetic gene, LONELY GUY (LOG), results in a wus-like phenotype in rice. Herein, we find the Arabidopsis LOG4 gene is expressed in the SAM epidermis. We use this to develop a computational model representing a growing SAM to suggest the plausibility that apically derived cytokinin and CLV signaling, together, act as positional cues for patterning the WUS domain within the stem cell niche. Furthermore, model simulations backed by experimental data suggest a previously unknown negative feedback between WUS function and cytokinin biosynthesis in the Arabidopsis SAM epidermis. These results suggest a plausible dynamic feedback principle by which the SAM stem cell niche is patterned.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...