ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-03-20
    Description: The principles of natural protein engineering are obscured by overlapping functions and complexity accumulated through natural selection and evolution. Completely artificial proteins offer a clean slate on which to define and test these protein engineering principles, while recreating and extending natural functions. Here we introduce this method with the design of an oxygen transport protein, akin to human neuroglobin. Beginning with a simple and unnatural helix-forming sequence with just three different amino acids, we assembled a four-helix bundle, positioned histidines to bis-histidine ligate haems, and exploited helical rotation and glutamate burial on haem binding to introduce distal histidine strain and facilitate O(2) binding. For stable oxygen binding without haem oxidation, water is excluded by simple packing of the protein interior and loops that reduce helical-interface mobility. O(2) affinities and exchange timescales match natural globins with distal histidines, with the remarkable exception that O(2) binds tighter than CO.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koder, Ronald L -- Anderson, J L Ross -- Solomon, Lee A -- Reddy, Konda S -- Moser, Christopher C -- Dutton, P Leslie -- R01 GM041048/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Mar 19;458(7236):305-9. doi: 10.1038/nature07841.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295603" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Carbon Monoxide/metabolism ; Carrier Proteins/*chemical synthesis/chemistry/*metabolism ; Drug Design ; Globins/chemistry ; Glutamic Acid/metabolism ; Heme/metabolism ; Histidine/metabolism ; Humans ; Kinetics ; Ligands ; Nerve Tissue Proteins/chemistry ; Oxidation-Reduction ; Oxygen/*metabolism ; *Protein Engineering ; Protein Structure, Secondary ; Rotation ; Spectroscopy, Fourier Transform Infrared ; Substrate Specificity ; Water/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-08-18
    Description: The arabidopsis thaliana HY4 gene encodes CRY1, a 75-kilodalton flavoprotein mediating blue light-dependent regulation of seedling development. CRY1 is demonstrated here to noncovalently bind stoichiometric amounts of flavin adenine dinucleotide (FAD). The redox properties of FAD bound by CRY1 include an unexpected stability of the neutral radical flavosemiquinone (FADH.). The absorption properties of this flavosemiquinone provide a likely explanation for the additional sensitivity exhibited by CRY1-mediated responses in the green region of the visible spectrum. Despite the sequence homology to microbial DNA photolyases, CRY1 was found to have no detectable photolyase activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, C -- Robertson, D E -- Ahmad, M -- Raibekas, A A -- Jorns, M S -- Dutton, P L -- Cashmore, A R -- GM31704/GM/NIGMS NIH HHS/ -- GM38409/GM/NIGMS NIH HHS/ -- GM51956/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Aug 18;269(5226):968-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638620" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins ; Cryptochromes ; Deoxyribodipyrimidine Photo-Lyase/metabolism ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/chemistry/genetics/*metabolism ; Genes, Plant ; Light ; Oxidation-Reduction ; *Photoreceptor Cells, Invertebrate ; Plant Proteins/chemistry/genetics/*metabolism ; Quinones/metabolism ; Receptors, G-Protein-Coupled ; Spectrum Analysis ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-24
    Description: The ubiquinol-cytochrome c oxidoreductases, central to cellular respiration and photosynthesis, are homodimers. High symmetry has frustrated resolution of whether cross-dimer interactions are functionally important. This has resulted in a proliferation of contradictory models. Here, we duplicated and fused cytochrome b subunits, and then broke symmetry by introducing independent mutations into each monomer. Electrons moved freely within and between monomers, crossing an electron-transfer bridge between two hemes in the core of the dimer. This revealed an H-shaped electron-transfer system that distributes electrons between four quinone oxidation-reduction terminals at the corners of the dimer within the millisecond time scale of enzymatic turnover. Free and unregulated distribution of electrons acts like a molecular-scale bus bar, a design often exploited in electronics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073802/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073802/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swierczek, Monika -- Cieluch, Ewelina -- Sarewicz, Marcin -- Borek, Arkadiusz -- Moser, Christopher C -- Dutton, P Leslie -- Osyczka, Artur -- 076488/Wellcome Trust/United Kingdom -- R01 GM027309/GM/NIGMS NIH HHS/ -- R01 GM041048/GM/NIGMS NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):451-4. doi: 10.1126/science.1190899.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651150" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/metabolism ; Cytochromes c/metabolism ; *Electron Transport ; Electron Transport Complex III/*chemistry/genetics/*metabolism ; *Electrons ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Oxidation-Reduction ; Point Mutation ; Protein Conformation ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Rhodobacter capsulatus/*enzymology ; Ubiquinone/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dutton, P Leslie -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1641. doi: 10.1126/science.1200976.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA. dutton@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21164008" target="_blank"〉PubMed〈/a〉
    Keywords: Biophysics/*history/instrumentation ; Diagnostic Techniques and Procedures/history ; Energy Metabolism ; History, 20th Century ; History, 21st Century ; Optics and Photonics/history ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 222 (1973), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 5778-5783 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 3 (1974), S. 203-230 
    ISSN: 0084-6589
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    JBIC 2 (1997), S. 393-398 
    ISSN: 1432-1327
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Nature has engineered a universe of redox proteins to efficiently control the oxidation and reduction of substrates and to convert redox energy into a delocalized transmembrane proton gradient power source. Some rapid physiologically relevant electron transfers are rate limited by electron tunneling. Distance appears to be the principle means naturally selected to control the speed of electron tunneling; free energy and reorganization energy can play important auxiliary roles. Thus, an electron from a biological redox center can tunnel in any direction and is likely to reduce the closest redox center with a favorable free energy. Although it is clearly possible to facilitate electron tunneling by designing covalent bridges in the regions between donors and acceptors, this does not seem to be a strategy that evolution has used. Evolutionary mutagenic adjustment of a bridge-like quality of the amino acid medium may be difficult in the face of heavy selection on the folding, stability and other properties of the protein medium. Repositioning cofactors by even a few angstroms has more profound effects on promoting and retarding rates, independent of the structure of the amino acid medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-03-31
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-09-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...