ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-08
    Description: A role for B-cell-receptor (BCR) signalling in lymphomagenesis has been inferred by studying immunoglobulin genes in human lymphomas and by engineering mouse models, but genetic and functional evidence for its oncogenic role in human lymphomas is needed. Here we describe a form of 'chronic active' BCR signalling that is required for cell survival in the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). The signalling adaptor CARD11 is required for constitutive NF-kappaB pathway activity and survival in ABC DLBCL. Roughly 10% of ABC DLBCLs have mutant CARD11 isoforms that activate NF-kappaB, but the mechanism that engages wild-type CARD11 in other ABC DLBCLs was unknown. An RNA interference genetic screen revealed that a BCR signalling component, Bruton's tyrosine kinase, is essential for the survival of ABC DLBCLs with wild-type CARD11. In addition, knockdown of proximal BCR subunits (IgM, Ig-kappa, CD79A and CD79B) killed ABC DLBCLs with wild-type CARD11 but not other lymphomas. The BCRs in these ABC DLBCLs formed prominent clusters in the plasma membrane with low diffusion, similarly to BCRs in antigen-stimulated normal B cells. Somatic mutations affecting the immunoreceptor tyrosine-based activation motif (ITAM) signalling modules of CD79B and CD79A were detected frequently in ABC DLBCL biopsy samples but rarely in other DLBCLs and never in Burkitt's lymphoma or mucosa-associated lymphoid tissue lymphoma. In 18% of ABC DLBCLs, one functionally critical residue of CD79B, the first ITAM tyrosine, was mutated. These mutations increased surface BCR expression and attenuated Lyn kinase, a feedback inhibitor of BCR signalling. These findings establish chronic active BCR signalling as a new pathogenetic mechanism in ABC DLBCL, suggesting several therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, R Eric -- Ngo, Vu N -- Lenz, Georg -- Tolar, Pavel -- Young, Ryan M -- Romesser, Paul B -- Kohlhammer, Holger -- Lamy, Laurence -- Zhao, Hong -- Yang, Yandan -- Xu, Weihong -- Shaffer, Arthur L -- Wright, George -- Xiao, Wenming -- Powell, John -- Jiang, Jian-Kang -- Thomas, Craig J -- Rosenwald, Andreas -- Ott, German -- Muller-Hermelink, Hans Konrad -- Gascoyne, Randy D -- Connors, Joseph M -- Johnson, Nathalie A -- Rimsza, Lisa M -- Campo, Elias -- Jaffe, Elaine S -- Wilson, Wyndham H -- Delabie, Jan -- Smeland, Erlend B -- Fisher, Richard I -- Braziel, Rita M -- Tubbs, Raymond R -- Cook, J R -- Weisenburger, Dennis D -- Chan, Wing C -- Pierce, Susan K -- Staudt, Louis M -- NIH0011349228/PHS HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):88-92. doi: 10.1038/nature08638.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054396" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Antigens, CD79/chemistry/genetics/metabolism ; B-Lymphocytes/*metabolism/pathology ; CARD Signaling Adaptor Proteins/genetics/metabolism ; Cell Line, Tumor ; Cell Membrane/metabolism ; Cell Survival ; Guanylate Cyclase/genetics/metabolism ; Humans ; Lymphoma, Large B-Cell, Diffuse/genetics/*metabolism/*pathology ; Mutation ; Protein-Tyrosine Kinases/genetics/metabolism ; RNA Interference ; Receptors, Antigen, B-Cell/deficiency/genetics/*metabolism ; *Signal Transduction ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉Molecularly targeted therapies aim to obstruct cell autonomous programs required for tumor growth. We show that mitogen-activated protein kinase (MAPK) and cyclin-dependent kinase 4/6 inhibitors act in combination to suppress the proliferation of KRAS-mutant lung cancer cells while simultaneously provoking a natural killer (NK) cell surveillance program leading to tumor cell death. The drug combination, but neither agent alone, promotes retinoblastoma (RB) protein-mediated cellular senescence and activation of the immunomodulatory senescence-associated secretory phenotype (SASP). SASP components tumor necrosis factor–α and intercellular adhesion molecule–1 are required for NK cell surveillance of drug-treated tumor cells, which contributes to tumor regressions and prolonged survival in a KRAS-mutant lung cancer mouse model. Therefore, molecularly targeted agents capable of inducing senescence can produce tumor control through non–cell autonomous mechanisms involving NK cell surveillance.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-21
    Description: Molecularly targeted therapies aim to obstruct cell autonomous programs required for tumor growth. We show that mitogen-activated protein kinase (MAPK) and cyclin-dependent kinase 4/6 inhibitors act in combination to suppress the proliferation of KRAS-mutant lung cancer cells while simultaneously provoking a natural killer (NK) cell surveillance program leading to tumor cell death. The drug combination, but neither agent alone, promotes retinoblastoma (RB) protein-mediated cellular senescence and activation of the immunomodulatory senescence-associated secretory phenotype (SASP). SASP components tumor necrosis factor–α and intercellular adhesion molecule–1 are required for NK cell surveillance of drug-treated tumor cells, which contributes to tumor regressions and prolonged survival in a KRAS-mutant lung cancer mouse model. Therefore, molecularly targeted agents capable of inducing senescence can produce tumor control through non–cell autonomous mechanisms involving NK cell surveillance.
    Keywords: Immunology, Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...