ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-03-01
    Print ISSN: 0372-8854
    Electronic ISSN: 1864-1687
    Topics: Geography , Geosciences
    Published by Schweizerbart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Cryosphere, COPERNICUS GESELLSCHAFT MBH, 15(5), pp. 2383-2399, ISSN: 1994-0416
    Publication Date: 2021-07-01
    Description: Glaciers worldwide are shrinking at an accelerated rate as the climate changes in response to anthropogenic influence. While increasing air temperature is the main factor behind glacier mass and volume loss, variable patterns of precipitation distribution also play a role, though these are not as well understood. Furthermore, while the response of surface glaciers (from large polar ice sheets to small alpine glaciers) to climatic changes is well documented and continuously monitored, little to nothing is known about how cave glaciers (perennial ice accumulations in rock-hosted caves) react to atmospheric warming. In this context, we present here the response of cave and surface glaciers in SE Europe to the extreme precipitation events occurring between May and July 2019 in SE Europe. Surface glaciers in the northern Balkan Peninsula lost between 17 % and 19 % of their total area, while cave glaciers in Croatia, Greece, Romania and Slovenia lost ice at levels higher than any recorded by instrumental observations during the past decades. The melting was likely the result of large amounts of warm water delivered directly to the surface of the glaciers, leading to rapid reduction in the area of surface glaciers and the thickness of cave glaciers. As climate models predict that such extreme precipitation events are set to increase in frequency and intensity, the presence of cave glaciers in SE Europe and the paleoclimatic information they host may be lost in the near future. Moreover, the same projected continuous warming and increase in precipitation extremes could pose an additional threat to the alpine glaciers in southern Europe, resulting in faster-than-predicted melting.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-15
    Description: High-latitude regions are a hot spot of global warming, but the scarce availability of observations often limits the investigation of climate change impacts over these regions. However, the utilization of satellite-based remote sensing data offers new possibilities for such investigations. In the present study, vegetation greening, vegetation moisture and lake distribution derived from medium-resolution satellite imagery were analyzed over the Pechora catchment for the last 35 years. Here, we considered the entire Pechora catchment and the Pechora Delta region, located in the northern part of European Russia, and we investigated the vegetation and lake dynamics over different permafrost zones and across the two major biomes, taiga, and tundra. We also evaluated climate data records from meteorological stations and re-analysis data to find relations between these dynamics and climatic behavior. Considering the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Moisture Index (NDMI) in the summer, we found a general greening and moistening of the vegetation. While vegetation greenness follows the evolution of summer air temperature with a delay of one year, the vegetation moisture dynamics seems to better concur with annual total precipitation rather than summer precipitation, and also with annual snow water equivalent without lag. Both NDVI and NDMI show a much higher variability across discontinuous permafrost terrain compared to other types. Moreover, the analyses yielded an overall decrease in the area of permanent lakes and a noticeable increase in the area of seasonal lakes. While the first might be related to permafrost thawing, the latter seems to be connected to an increase of annual snow water equivalent. The general consistency between the indices of vegetation greenness and moisture based on satellite imagery and the climate data highlights the efficacy and reliability of combining Landsat satellite data, ERA-Interim reanalysis and meteorological data to monitor temporal dynamics of the land surface in Arctic areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...