ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-12
    Description: Osteoblasts and endothelium constitute functional niches that support haematopoietic stem cells in mammalian bone marrow. Adult bone marrow also contains adipocytes, the number of which correlates inversely with the haematopoietic activity of the marrow. Fatty infiltration of haematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia. To explore whether adipocytes influence haematopoiesis or simply fill marrow space, we compared the haematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. Here we show, by flow cytometry, colony-forming activity and competitive repopulation assay, that haematopoietic stem cells and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 'fatless' mice, which are genetically incapable of forming adipocytes, and in mice treated with the peroxisome proliferator-activated receptor-gamma inhibitor bisphenol A diglycidyl ether, which inhibits adipogenesis, marrow engraftment after irradiation is accelerated relative to wild-type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone-marrow microenvironment, and indicate that antagonizing marrow adipogenesis may enhance haematopoietic recovery in clinical bone-marrow transplantation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831539/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831539/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naveiras, Olaia -- Nardi, Valentina -- Wenzel, Pamela L -- Hauschka, Peter V -- Fahey, Frederic -- Daley, George Q -- DP1 OD000256/OD/NIH HHS/ -- DP1 OD000256-01/OD/NIH HHS/ -- R01 DK059279/DK/NIDDK NIH HHS/ -- R01 DK059279-06/DK/NIDDK NIH HHS/ -- R01 DK070055/DK/NIDDK NIH HHS/ -- R01 DK070055-01/DK/NIDDK NIH HHS/ -- T32- HL -7623/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 9;460(7252):259-63. doi: 10.1038/nature08099. Epub 2009 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516257" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects/*physiology ; Adipogenesis/drug effects ; Adiposity/physiology ; Animals ; Benzhydryl Compounds ; Bone Marrow Cells/*cytology/*metabolism ; Bone Marrow Transplantation ; Cell Line ; Epoxy Compounds/pharmacology ; Femur ; *Hematopoiesis/drug effects ; Hematopoietic Stem Cells/cytology/metabolism ; Homeostasis ; Mice ; Mice, Inbred C57BL ; Osteogenesis ; Spine/cytology/metabolism ; Stromal Cells ; Tail ; Thorax ; Tibia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-15
    Description: Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adamo, Luigi -- Naveiras, Olaia -- Wenzel, Pamela L -- McKinney-Freeman, Shannon -- Mack, Peter J -- Gracia-Sancho, Jorge -- Suchy-Dicey, Astrid -- Yoshimoto, Momoko -- Lensch, M William -- Yoder, Mervin C -- Garcia-Cardena, Guillermo -- Daley, George Q -- R01 AI080759/AI/NIAID NIH HHS/ -- R01 AI080759-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 25;459(7250):1131-5. doi: 10.1038/nature08073. Epub 2009 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19440194" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/embryology ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Core Binding Factor Alpha 2 Subunit/genetics ; Embryonic Stem Cells ; Endothelium-Dependent Relaxing Factors/pharmacology ; Female ; Gene Expression Regulation, Developmental ; Hematopoiesis/*physiology ; Hematopoietic Stem Cells/*cytology/drug effects ; Mice ; Nitric Oxide/pharmacology ; Pregnancy ; *Stress, Mechanical
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-21
    Description: Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an 'epigenetic memory' of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K -- Doi, A -- Wen, B -- Ng, K -- Zhao, R -- Cahan, P -- Kim, J -- Aryee, M J -- Ji, H -- Ehrlich, L I R -- Yabuuchi, A -- Takeuchi, A -- Cunniff, K C -- Hongguang, H -- McKinney-Freeman, S -- Naveiras, O -- Yoon, T J -- Irizarry, R A -- Jung, N -- Seita, J -- Hanna, J -- Murakami, P -- Jaenisch, R -- Weissleder, R -- Orkin, S H -- Weissman, I L -- Feinberg, A P -- Daley, G Q -- CA86065/CA/NCI NIH HHS/ -- DP1 OD000256/OD/NIH HHS/ -- DP1 OD000256-01/OD/NIH HHS/ -- HL099999/HL/NHLBI NIH HHS/ -- K99 HL093212/HL/NHLBI NIH HHS/ -- K99 HL093212-01/HL/NHLBI NIH HHS/ -- K99 HL093212-02/HL/NHLBI NIH HHS/ -- K99HL093212-01/HL/NHLBI NIH HHS/ -- P50HG003233/HG/NHGRI NIH HHS/ -- R01 CA086065/CA/NCI NIH HHS/ -- R01 DK059279/DK/NIDDK NIH HHS/ -- R01 DK059279-02/DK/NIDDK NIH HHS/ -- R01 DK059279-10/DK/NIDDK NIH HHS/ -- R01 DK070055/DK/NIDDK NIH HHS/ -- R01 DK070055-01/DK/NIDDK NIH HHS/ -- R01 GM083084/GM/NIGMS NIH HHS/ -- R01 GM083084-04/GM/NIGMS NIH HHS/ -- R01-DK59279/DK/NIDDK NIH HHS/ -- R01-DK70055/DK/NIDDK NIH HHS/ -- R01AI047457/AI/NIAID NIH HHS/ -- R01AI047458/AI/NIAID NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- R37CA054358/CA/NCI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2 HL102815-01/HL/NHLBI NIH HHS/ -- RC2-HL102815/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 16;467(7313):285-90. doi: 10.1038/nature09342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20644535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/genetics ; Cell Lineage/genetics ; Cellular Reprogramming/genetics ; DNA Methylation/genetics ; Embryonic Stem Cells/cytology/metabolism ; *Epigenesis, Genetic ; Genome/genetics ; Hematopoietic Stem Cells/cytology/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Nuclear Transfer Techniques ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-12-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-29
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-19
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...