ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 275 (1997), S. 520-529 
    ISSN: 1435-1536
    Keywords: Key words PE-g-LCP copolymers ; non-isothermal crystallization ; crystallization kinetics ; morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  This study presents DSC and optical microscopy investigations on copolymers of semiflexible liquid crystalline polymer SBH 112 grafted to functionalized low molecular mass polyethylene (PEox) obtained by melt polycondensation or reactive blending procedures. The crystallization behavior of the PE-g-SBH copolymers has been studied under non-isothermal measurement conditions carried out at different cooling rates. The crystallization temperature (T cr) of the PE component of the copolymers decreases steadily upon increasing the concentration of the SBH grafts. It was found that the copolymers prepared by reactive blending crystallize at slightly higher T cr than those prepared by polycondensation and with a higher rate, confirmed by the determination of the crystallization rate coefficients (CRC). The results have been interpreted by the fact that the PE crystallizable segments and SBH grafts of the copolymers obtained by reactive blending are longer than those of the copolymers prepared by polycondensation. The overall nonisothermal crystallization kinetics has been studied by the Harnisch and Muschik equation. The results show that the mechanism of the crystallization of the PE phase changes only when the SBH content overruns ca.50%, due to the decrease of both nucleation and crystal growth rates. The morphology of the copolymers crystallized nonisothermally from melt has been examined by polarization microscopy. Fairly homogeneous morphology with tiny PE spherulites is observed for PE-g-SBH copolymers prepared by polycondensation with SBH as the minor phase. No sign of the dispersed LCP domains can be recognized. On the contrary, the morphology of the copolymers prepared by reactive blending is distinctly biphasic. The allegedly longer PE segments crystallize into tiny spherulites too, but the LC domains formed by the long SBH branches present in this type of copolymers appear clearly in the micrographs at room temperature. It is concluded that the copolymers prepared by reactive blending would be more effective as compatibilizers for PE/SBH blends than those prepared by polycondensation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 62 (1996), S. 1613-1625 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Reactive blends (50/50 w/w)of a low molar mass polyethylene containing free carboxylic groups (PEox) and a semiflexible liquid crystalline polyester (SBH 1:1:2, by Eniricerche) have been prepared at 240°C in a Brabender mixer, in the presence of Ti(OBu)4 catalyst, for different mixing times (15,60, and 120 min). In order to prove the formation of a PE-g-SBH copolymer, the blends have been fractionated by successive extractions with boiling toluene and xylene. The soluble fractions and the residues have been analyzed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG and DTG), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). All analytical procedures concordantly show that PE-g-SBH copolymers with different compositions, arising from differences of either the number of PEox carboxylic groups entering the transesterification or the length of grafted SBH branches, are formed as a result of blending. Depending on the relative content of PE and SBH segments, the copolymers dissolve in the solvents, together with any unrreacted PEox, or remain in the residues, together with neat SBH. Qualitative IR analyses and quantitative TG measurements have shown that the amount of copolymers increases strongly with the mixing time. Preliminary SEM observations indicate that the unfractionated products of the reactive blending carried out with long (120 min) mixing times lead to improved interfacial adhesion and phase dispersion when added to PE/SBH blends. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 60 (1996), S. 1665-1676 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The possibility of reinforcing polyethylene (PE) by blending it with a liquid crystalline polymer (LCP) rests on the successful improvement of phase compatibility and interfacial adhesion of these two structurally unlike polymers. The approach that is being considered in our laboratories consists of the synthesis of PE-LCP block or graft copolymers and of their use as compatibilizing agents for PE/LCP blends. In this work, the melt polycon-densation of sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) has been carried out at temperatures up to 280°C in the presence of an oxidized low molar mass PE sample containing free carboxylic groups (PEox), with the main scope of demonstrating that a PE-g-LCP copolymer may be synthesized by this route. The polycon-densation product has been fractionated by successive extractions with boiling toluene and xylene. The soluble fractions and the residues have been characterized by IR and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TG, DTG), and scanning electron microscopy (SEM). The extractions and the analyses have been repeated on a PEox/LCP blend prepared by melt mixing PEox and preformed LCP (SBH 112, by Eniricerche). The results show that, whereas for the blend a fairly clean separation of PEox and SBH can be obtained by solvent extraction, this is not so for the polycondensation product. All analytical procedures concordantly show that a PEox-g-SBH copolymer has, in fact, been obtained. In effect, both PEox and SBH chain segments are present, with different relative ratios, in all fractions of the polycondensate. Moreover, a fairly quantitative esterification of the PEox carboxyl groups has been shown by IR analysis to take place in the adopted conditions. Preliminary morphological investigations carried out by SEM have shown that the addition of the synthesized graft copolymer into HDPE/SBH blends leads to an improvement of the interfacial adhesion. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-06-01
    Print ISSN: 0372-820X
    Electronic ISSN: 1435-1536
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...