ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-12-06
    Description: This data is part of the BMBF project CUSCO (Coastal Upwelling Systems in a Changing Ocean). Here we report the dissolved inorganic carbon concentration and total alkalinity during a 35-day experiment, where we enclosed natural plankton communities in in-situ mesocosms off Peru. The experiment investigated the interactive effects of light and upwelling on the Humboldt upwelling ecosystem by mimicking a gradient of upwelling intensities (0%, 15%, 30%, 45% and 60%) under summer-time high light and winter-time low light. Integrated seawater samples from a depth between 0 and 10m were collected using a 5L Integrating Water sampler (IWS; Hydro-Bios, Kiel). Dissolved inorganic carbon (DIC) and total alkalinity (TA) samples were obtained by 0.2µm gentle pressure filtration, poisoned with saturated 7.5 % mercury chloride (HgCl2) solution and frozen at -20°C until measurement. Samples for Total Alkalinity (TA) were measured by means of potentiometric titration with 0.05 M HCl using an automated titration device (862 Metrohm Compact Titrosampler). All DIC samples taken until day 17 were measured using an Automated Infra-Red Inorganic Carbon Analyzer (AIRICA) with a LICOR detector (LI-7000 CO2/H20 Analyzer, MARIANDA, Kiel). Certified reference material (Dickson standard for oceanic CO2 Measurements - CRM Batch 142 with salinity = 33.389 and DIC = 2038,07 µmol/kg) was measured and used to correct measured sample values. Additional DIC samples were measured using gas chromatography-mass spectrometry (GC-MS) to determine the 13C signal. The data of the GC-MS was adjusted to the AIRICA data using a linear transformation. Missing days were filled using an average of the day before and after.
    Keywords: Alkalinity, total; AQUACOSM; Automated Infra Red Inorganic Carbon Analyzer (AIRICA), MARIANDA; with a LICOR detector (LI-7000 CO2/H2O Analyzer); Carbon, inorganic, dissolved; Coastal Upwelling System in a Changing Ocean; Comment; CUSCO; DATE/TIME; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; DIC; Event label; Field experiment; Gas chromatography - Mass spectrometry (GC-MS); Humboldt Current System; KOSMOS_2020; KOSMOS_2020_Mesocosm-M1; KOSMOS_2020_Mesocosm-M10; KOSMOS_2020_Mesocosm-M2; KOSMOS_2020_Mesocosm-M3; KOSMOS_2020_Mesocosm-M4; KOSMOS_2020_Mesocosm-M5; KOSMOS_2020_Mesocosm-M6; KOSMOS_2020_Mesocosm-M7; KOSMOS_2020_Mesocosm-M8; KOSMOS_2020_Mesocosm-M9; KOSMOS Peru; light limitation; MESO; Mesocosm experiment; Mesocosm label; mesocosm study; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Potentiometric titration, Metrohm 862 Compact Titrosampler; TA alkalinity; Treatment; Treatment: light condition; Type of study; Upwelling
    Type: Dataset
    Format: text/tab-separated-values, 1761 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-06
    Description: This data is part of the BMBF project CUSCO (Coastal Upwelling Systems in a Changing Ocean). Here we report the inorganic nutrient concentrations during a 35-day experiment, where we enclosed natural plankton communities in in-situ mesocosms off Peru. The experiment investigated the interactive effects of light and upwelling on the Humboldt upwelling ecosystem by mimicking a gradient of upwelling intensities (0%, 15%, 30%, 45% and 60%) under summer-time high light and winter-time low light. Integrated seawater samples from a depth between 0 and 10m were collected using a 5L Integrating Water sampler (IWS; Hydro-Bios, Kiel). Water samples for inorganic nutrients were filtered (0.45 µm PTFE syringe filter, Merck Millex) and analysed in triplicates. Dissolved inorganic nutrients (nitrate, nitrite, phosphate, and dissolved silica were determined using a spectrophotometer (ShimadzuV-1800) and standard colorimetric methods (Grasshoff et al., 2009; DOI: 10.1002/iroh.19850700232). Ammonium was determined fluorometrically. Due to the COVID-19 lockdown, we were not able to determine inorganic nutrients after day 17, and instead samples were frozen at -20°C after filtration and analysed with an autosampler (XY2 autosampler, SEAL Analytical) and a continuous flow analyzer (QuAAtro AutoAnalyzer, SEAL Analytical) connected to a fluorescence detector (FP-2020, JASCO).
    Keywords: Ammonium; AQUACOSM; Coastal Upwelling System in a Changing Ocean; Comment; CUSCO; DATE/TIME; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; Event label; Field experiment; Humboldt Current System; inorganic nutrients; KOSMOS_2020; KOSMOS_2020_Mesocosm-M1; KOSMOS_2020_Mesocosm-M10; KOSMOS_2020_Mesocosm-M2; KOSMOS_2020_Mesocosm-M3; KOSMOS_2020_Mesocosm-M4; KOSMOS_2020_Mesocosm-M5; KOSMOS_2020_Mesocosm-M6; KOSMOS_2020_Mesocosm-M7; KOSMOS_2020_Mesocosm-M8; KOSMOS_2020_Mesocosm-M9; KOSMOS Peru; light limitation; MESO; Mesocosm experiment; Mesocosm label; mesocosm study; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Nitrate; Nitrate and Nitrite; Nitrite; Phosphate; Silicate; Treatment; Treatment: light condition; Type of study; Upwelling
    Type: Dataset
    Format: text/tab-separated-values, 2687 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: The oceans' uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m**3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978-2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Ammonium; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Biogenic silica; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, particulate ratio; Carbon, total, particulate; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyceae indeterminata, biomass as carbon; Chlorophyll a; Chlorophyll a, standard deviation; Chrysophyceae indeterminata, biomass as carbon; Coast and continental shelf; Community composition and diversity; Cryptophyceae indeterminata, biomass as carbon; Cyanophyceae, biomass as carbon; DATE/TIME; Day of experiment; Diatoms indeterminata, biomass as carbon; Dinophyceae indeterminata, biomass as carbon; Entire community; Event label; Field experiment; Fjord; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS_2015_Mesocosm-M9; KOSMOS Bergen; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Nitrate; Nitrate and Nitrite; Nitrite; Nitrogen, organic, particulate; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; Nitrogen, total, particulate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, total, particulate; Potentiometric titration; Prasinophyceae indeterminata, biomass as carbon; Primary production/Photosynthesis; Prymnesiophyceae indeterminata, biomass as carbon; Ratio; Salinity; Salinity, standard deviation; Silicate; Temperate; Temperature, water; Temperature, water, standard deviation; Type
    Type: Dataset
    Format: text/tab-separated-values, 18566 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can mod- ify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predic- tions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes con- trolling organic matter cycling in the coastal Peruvian up- welling system. Eight mesocosms, each with a volume of ∼ 55 m3, were deployed for 50 d ∼ 6 km off Callao (12◦ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected sub- surface waters at two different locations in the regional oxy- gen minimum zone (OMZ) and injected these into four meso- cosms (mixing ratio ≈ 1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the indi- vidual mesocosms. The mesocosm phytoplankton commu- nities were initially dominated by diatoms but shifted to- wards a pronounced dominance of the mixotrophic dinoflag- ellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. san- guinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decou- pled from surface production and sustained by the remain- ing plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self- shading by phytoplankton and by inorganic nitrogen limita- tion which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few oppor- tunities for blooms, which represents an event where the sys- tem becomes unbalanced. Overall, our mesocosm study re- vealed some key links between ecological and biogeochem- ical processes for one of the most economically important regions in the oceans.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); Climate - Biogeochemistry Interactions in the Tropical Ocean; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; MESO; Mesocosm experiment; SFB754
    Type: Dataset
    Format: text/tab-separated-values, 11 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-27
    Description: Background: In recent years, increasing amounts of genomic and clinical cancer data have become publically available through large-scale collaborative projects such as The Cancer Genome Atlas (TCGA). However, as long as these datasets are difficult to access and interpret, they are essentially useless for a major part of the research community and their scientific potential will not be fully realized. To address these issues we developed MEXPRESS, a straightforward and easy-to-use web tool for the integration and visualization of the expression, DNA methylation and clinical TCGA data on a single-gene level (http://mexpress.be). Results: In comparison to existing tools, MEXPRESS allows researchers to quickly visualize and interpret the different TCGA datasets and their relationships for a single gene, as demonstrated for GSTP1 in prostate adenocarcinoma. We also used MEXPRESS to reveal the differences in the DNA methylation status of the PAM50 marker gene MLPH between the breast cancer subtypes and how these differences were linked to the expression of MPLH. Conclusions: We have created a user-friendly tool for the visualization and interpretation of TCGA data, offering clinical researchers a simple way to evaluate the TCGA data for their genes or candidate biomarkers of interest.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2001-07-17
    Print ISSN: 0014-5793
    Electronic ISSN: 1873-3468
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-12
    Description: Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can modify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes controlling organic matter cycling in the coastal Peruvian upwelling system. Eight mesocosms, each with a volume of ∼55 m3, were deployed for 50 d ∼6 km off Callao (12∘ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected subsurface waters at two different locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms (mixing ratio ≈1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the individual mesocosms. The mesocosm phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. sanguinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decoupled from surface production and sustained by the remaining plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self-shading by phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few opportunities for blooms, which represents an event where the system becomes unbalanced. Overall, our mesocosm study revealed some key links between ecological and biogeochemical processes for one of the most economically important regions in the oceans.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...