ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Keywords: ASTRODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 29; 216-222
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Keywords: ASTRODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 29; 5; p. 653-660.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, (balloon + parachute) for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include missions to Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto. Data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the peak heating by a factor of 10 for the spacecraft, and a factor of about 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are a smaller mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed computed to achieve the desired orbiter exit conditions. For a lander an accurate landing point could be achieved by providing the lander with a small gliding capacity, using the large potential energy available from being subsonic at high altitude. Alternatively the ballute can be retained to act as a parachute or soft-landing device, or to float the payload as a buoyant aerobot. As expected, the ballute has smaller size for relatively small entry speeds, such as for Mars, or for the extensive atmosphere of a low-gravity planet such as Pluto. The author will discuss presently available ballute materials and a development program of aerodynamic tests and materials that would be required for ballutes to achieve their full potential.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: A mission to return a sample to Earth from the surface of Venus faces a multitude of multidisciplinary challenges. In addition to the complications inherent in any sample return mission, Venus presents the additional difficulties of a deep gravity well essentially equivalent to Earth's and a hot-house atmosphere which generates extremes of high temperature, density, and pressure unmatched at any other known surface in the solar system. The Jet Propulsion Laboratory of the California Institute of Technology recently conducted a study to develop an architecture for such a mission; a major goal of this study was to identify technology developments which would need to be pursued in order to make such a mission feasible at a cost much less than estimated in previous. The final design of this mission is years away but the study results presented here show our current mission architecture as it applies to a particular mission opportunity, give a summary of the engineering and science trades which were made in the process of developing it, and identify the main technology development efforts needed.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: A new software tool designed to perform aeroassist studies has been developed by Global Aerospace Corporation (GAC). The Hypersonic Planetary Aeroassist Simulation System (HyperPASS) [1] enables users to perform guided aerocapture, guided ballute aerocapture, aerobraking, orbit decay, or unguided entry simulations at any of six target bodies (Venus, Earth, Mars, Jupiter, Titan, or Neptune). HyperPASS is currently being used for trade studies to investigate (1) aerocapture performance with alternate aeroshell types, varying flight path angle and entry velocity, different gload and heating limits, and angle of attack and angle of bank variations; (2) variable, attached ballute geometry; (3) railgun launched projectile trajectories, and (4) preliminary orbit decay evolution. After completing a simulation, there are numerous visualization options in which data can be plotted, saved, or exported to various formats. Several analysis examples will be described.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 251-256; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The aerodynamic performance of a vehicle designed to execute an aerogravity assisted maneuver, which combines a gravitational turn with a low-drag atmosphere pass, is examined. The advantage of the aerogravity assisted maneuver, as opposed to a more traditional gravity-assist trajectory, is that, through the use of a controlled atmospheric flight, nearly any deflection angle around a gravitating body can be realized. This holds the promise of providing extremely large values of Delta V. The success of such a maneuver depends on being able to design a vehicle which can execute sustained atmospheric flight at Mach numbers in the range of 50 - 100 with minimal drag losses. Some simple modeling is used to demonstrate design rules for the design of such vehicles, and to estimate the deterioration of their performance during the flight. Two sample aerogravity-assisted maneuvers are detailed, including a close solar approach requiring modest Delta V, and a sprint mission to Pluto.
    Keywords: ASTRODYNAMICS
    Type: AIAA PAPER 91-0053
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This paper examines the potential of aeroassist maneuvers at Mars for missions to the sun and to Pluto, using a high-lift/drag vehicle such as the waverider to perform an atmospheric 'fly-around' of Mars, in order to rotate the planetocentric velocity vector, thus adding to the rather small rotation due to gravity alone. A fly-around in one direction or the other can place the aphelion or the perihelion of the resulting orbit at the Mars distance, for missions toward the sun or toward Pluto, respectively. The parameters of such maneuvers are given as a function of earth launch velocity.
    Keywords: ASTRODYNAMICS
    Type: AIAA PAPER 90-0539
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: The In Space Propulsion Program is funding a team lead by Kevin Miller at Ball Aerospace. This team of Industry, NASA, and Academic researchers is actively pursuing ballute technology development, with very promising results. The focus of that study has been to maximize the payload that is put into orbit (around Titan, Neptune, and Mars). So far the mass associated with the ballute has been minimized, because it was being thrown away. If an instrument package is attached to the Ballute, it will eventually land on the surface. Thus, the Ballute can do double duty: Aerocapture the Orbiter and Soft-land a set of instruments on the surface.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: The author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto, and data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero, deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the heating by a factor of 10 for the spacecraft and a factor of 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal. protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are less mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed computed to achieve the desired orbiter exit conditions. For a lander an accurate landing point could be achieved by providing the lander with a small gliding capacity, using the large potential energy available from being subsonic at high altitude. Alternatively the ballute can be retained to act as a parachute or soft-landing device, or to float the payload as a buoyant aerobot. As expected, the ballute has smaller size for relatively small entry speeds, such as for Mars and Titan, or for the extensive atmosphere of a low-gravity planet such as Pluto. Details of a ballute to place a small Mars orbiter and a small Pluto lander will be given to illustrate the concept. The author will discuss presently available ballute materials and a development program of aerodynamic tests and materials that would be required for ballutes to achieve their full potential.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Initial analyses of the aerogravity assist (AGA) delivery technique to solar system targets (and beyond) has been encouraging. Mission opportunities are introduced that do not exist with typical gravity assist trajectories and current launch capabilities. The technique has the most payoff for high-energy missions such as outer planet orbiters and flybys. The goal of this technique is to reduce the flight duration significantly and to eliminate propulsion for orbit insertion. The paper will discuss detailed analyses and parametric studies that consider launch opportunities for missions to the sun, Saturn, Uranus, Neptune, and Pluto using AGA at Venus and Mars.
    Keywords: ASTRODYNAMICS
    Type: AIAA PAPER 91-0531 , Journal of Spacecraft and Rockets (ISSN 0022-4650); 29; 223-232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...