ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-03
    Description: A network of seismometers has been installed on the Gugla rock glacier since October 2015 to estimate seismic velocity changes and detect microseismicity. These two processes are related to mechanical and structural variations occurring within the rock glacier. Seismic monitoring thus allows a better understanding of the dynamics of rock glaciers throughout the year. We observed seasonal variations in seismic wave velocity and microseismic activity over the 3 yr of the study. In the first part of our analysis, we used ambient noise correlations to compute daily changes of surface wave velocity. In winter, seismic wave velocities were higher, probably due to refreezing of the permafrost active layer and cooling of the uppermost permafrost layers, leading to increased overall rigidity of the medium. This assumption was verified using a seismic model of wave propagation that estimates the depth of P- and S-wave velocity changes from 0 down to 10 m. During melting periods, both a sudden velocity decrease and a decorrelation of the seismic responses were observed. These effects can probably be explained by the increased water content of the active layer. In the second part of our study, we focused on detecting microseismic signals generated in and around the rock glacier. This seismic activity (microquakes and rockfalls) also exhibits seasonal variations, with a maximum in spring and summer, which correlates principally with an exacerbated post-winter erosional phase of the front and a faster rock glacier displacement rate. In addition, we observed short bursts of microseismicity, both during snowfall and during rapid melting periods, probably due to pore pressure increase.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-02
    Description: Among mountainous permafrost landforms, rock glaciers are mostly abundant in periglacial areas, as tongue-shaped heterogeneous bodies. Passive seismic monitoring systems have the potential to provide continuous recordings sensitive to hydro-mechanical parameters of the subsurface. Two active rock glaciers located in the Alps (Gugla, Switzerland, and Laurichard, France) have been instrumented with seismic networks. Here, we analyze the spectral content of ambient noise to study the modal sensitivity of rock glaciers, which is directly linked to the system's elastic properties. For both sites, we succeed in tracking and monitoring resonance frequencies of specific vibrating modes of the rock glaciers over several years. These frequencies show a seasonal pattern characterized by higher frequencies at the end of winters and lower frequencies in warm periods. We interpret these variations as the effect of the seasonal freeze–thawing cycle on elastic properties of the medium. To assess this assumption, we model both rock glaciers in summer, using seismic velocities constrained by active seismic acquisitions, while bedrock depth is constrained by ground-penetrating radar surveys. The variations in elastic properties occurring in winter due to freezing were taken into account thanks to a three-phase Biot–Gassmann poroelastic model, where the rock glacier is considered a mixture of a solid porous matrix and pores filled by water or ice. Assuming rock glaciers to be vibrating structures, we numerically compute the modal response of such mechanical models by a finite-element method. The resulting modeled resonance frequencies fit well the measured ones over seasons, reinforcing the validity of our poroelastic approach. This seismic monitoring allows then a better understanding of the location, intensity and timing of freeze–thawing cycles affecting rock glaciers.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: This dataset collates data of continuously acquired kinematic observations obtained through in-situ Global Navigation Satellite Systems (GNSS) instruments that have been designed and implemented in a large-scale multi field-site monitoring campaign across the whole Swiss Alps. The landforms covered include rock glaciers, high-alpine steep bedrock bedrock as well as landslide sites, most of which are situated in permafrost areas. The dataset was acquired at 54 different stations situated at locations from 2304 to 4003 meter a.s.l and comprises 209'948 daily positions derived through double-differential GNSS post-processing. Apart from these, the dataset contains down-sampled and cleaned time series of weather station and inclinometer data as well as the full set of GNSS observables in RINEX format. Furthermore the dataset is accompanied by tools for processing and data management in order to facilitate reuse, open alternate usage opportunities and support the life-long living data process with updates.
    Keywords: Binary Object; Binary Object (File Size); Cryosphere; File content; GNSS; kinematics; Landslides; mass movements; MULT; Multiple investigations; Natural hazards; Permafrost; Rockfall; Swiss_Alps
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: This dataset collates data of continuously acquired kinematic observations obtained through in-situ Global Navigation Satellite Systems (GNSS) instruments that have been designed and implemented in a large-scale multi field-site monitoring campaign across the whole Swiss Alps. The landforms covered include rock glaciers, high-alpine steep bedrock bedrock as well as landslide sites, most of which are situated in permafrost areas. The dataset was acquired at 54 different stations situated at locations from 2304 to 4003 meter a.s.l and comprises 229'669 daily positions derived through double-differential GNSS post-processing. Apart from these, the dataset contains down-sampled and cleaned time series of weather station and inclinometer data as well as the full set of GNSS observables in RINEX format. Furthermore the dataset is accompanied by tools for processing and data management in order to facilitate reuse, open alternate usage opportunities and support the life-long living data process with updates. All data contained in this data set including updates to newer data can also be retrieved using the toolset available at https://git.uibk.ac.at/informatik/neslab/public/permasense/permasense_datamgr from the online PermaSense data repository at http://data.permasense.ch.
    Keywords: Binary Object; Binary Object (File Size); Cryosphere; File content; GNSS; kinematics; Landslides; mass movements; MULT; Multiple investigations; Natural hazards; Permafrost; Rockfall; Swiss_Alps
    Type: Dataset
    Format: text/tab-separated-values, 22 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...