ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The design, development, and operation of long duration spaceflight hardware has become an evolutionary process in which meticulous attention to details and lessons learned from previous experiences play a critical role. Invaluable to this process is the ability to retrieve and examine spaceflight hardware that has experienced a premature failure. While these situations are rare and unfortunate, the failure investigation and recovery from the event serve a valuable purpose in advancing future space mechanism development. Such a scenario began on July 31, 2010 with the premature failure of an ammonia pump on the external active thermal control system of the International Space Station. The ground-based inspections of the returned pump and ensuing failure investigation revealed five potential bearing forces that were un-accounted for in the design phase and qualification testing of the pump. These forces could combine in a number of random orientations to overload the pump bearings leading to solid-surface contact, wear, and premature failure. The recovery plan identified one of these five forces as being related to the square of the operating speed of the pump and this fact was used to recover design life through a change in flight rules for the operation of the pump module. Through the course of the failure investigation, recovery, and follow-on assessment of pump wear life, design guidance has been developed to improve the life of future mechanically pumped thermal control systems for both human and robotic exploration missions.
    Keywords: Space Sciences (General); Spacecraft Design, Testing and Performance; Mechanical Engineering
    Type: The 42nd Aerospace Mechanism Symposium; 451-462; NASA/CP-2014-217519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Small bore (6.35 millimeter) bushings, made from NASA PM400 solid lubricant composite, were evaluated in oscillatory sliding contact against a nickel-based superalloy shaft. Tests were conducted in air from 25 to 900 degrees Centigrade for extended periods (1 million cycles, plus or minus 15 degrees, 1 hertz) to assess the suitability of PM400 in gas turbine and reciprocating engine exhaust gas path control valve applications. Operating torque and estimated friction was monitored throughout the test duration and wear was measured at the end of test. In general, friction, torque and wear was low. At temperatures above 600 degrees Centigrade, bushing dimensional stability was achieved via short duration pre-test furnace exposure heat treatments. Preliminary test results show that bushings made from NASA PM400 are feasible for aerospace and industrial applications.
    Keywords: Mechanical Engineering
    Type: NASA/TM-2019-220038 , E-19637 , GRC-E-DAA-TN63032 , 2018 Tribology Frontiers Conference; 28ý31 Oct. 2018; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A novel pin on disc tribometer was designed and constructed to generate a high-speed, wear coefficient database for hydrodynamic bearings that are typically used in canned motors found in the active thermal control circuits of robotic and inhabited spacecraft. The primary motivation for this work was the premature failure of the active external thermal control pump on the International Space Station in 2010. During the failure investigation of this incident, the root cause was postulated to be high speed wear of the bearings. Although a detailed forensic analysis gave credibility to this theory, the lack of wear coefficient data at relevant conditions prevented validation of this finding. The database generated from the new Extreme Environment Tribometer (EET) enabled a closure calculation within 5% of the observed wear from inspections of the failed hardware. Testing in anhydrous ammonia and surrogate fluid was performed to provide a means for simplified testing in the future and to populate a preliminary database for the design of future active thermal control systems on spacecraft. The EET and test techniques developed for the measurement of high-speed wear coefficients are available to future system designers.
    Keywords: Mechanical Engineering
    Type: GRC-E-DAA-TN53046 , Aerospace Mechanisms Symposium; May 16, 2018 - May 18, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...