ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-06
    Description: Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr .
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-08
    Description: Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Richard E -- Krause, Johannes -- Briggs, Adrian W -- Maricic, Tomislav -- Stenzel, Udo -- Kircher, Martin -- Patterson, Nick -- Li, Heng -- Zhai, Weiwei -- Fritz, Markus Hsi-Yang -- Hansen, Nancy F -- Durand, Eric Y -- Malaspinas, Anna-Sapfo -- Jensen, Jeffrey D -- Marques-Bonet, Tomas -- Alkan, Can -- Prufer, Kay -- Meyer, Matthias -- Burbano, Hernan A -- Good, Jeffrey M -- Schultz, Rigo -- Aximu-Petri, Ayinuer -- Butthof, Anne -- Hober, Barbara -- Hoffner, Barbara -- Siegemund, Madlen -- Weihmann, Antje -- Nusbaum, Chad -- Lander, Eric S -- Russ, Carsten -- Novod, Nathaniel -- Affourtit, Jason -- Egholm, Michael -- Verna, Christine -- Rudan, Pavao -- Brajkovic, Dejana -- Kucan, Zeljko -- Gusic, Ivan -- Doronichev, Vladimir B -- Golovanova, Liubov V -- Lalueza-Fox, Carles -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Schmitz, Ralf W -- Johnson, Philip L F -- Eichler, Evan E -- Falush, Daniel -- Birney, Ewan -- Mullikin, James C -- Slatkin, Montgomery -- Nielsen, Rasmus -- Kelso, Janet -- Lachmann, Michael -- Reich, David -- Paabo, Svante -- GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):710-22. doi: 10.1126/science.1188021.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. green@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448178" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/genetics ; Animals ; Asian Continental Ancestry Group/genetics ; Base Sequence ; Bone and Bones ; DNA, Mitochondrial/genetics ; European Continental Ancestry Group/genetics ; Evolution, Molecular ; Extinction, Biological ; Female ; *Fossils ; Gene Dosage ; Gene Flow ; Genetic Variation ; *Genome ; *Genome, Human ; Haplotypes ; Hominidae/*genetics ; Humans ; Pan troglodytes/genetics ; Polymorphism, Single Nucleotide ; Selection, Genetic ; Sequence Alignment ; *Sequence Analysis, DNA ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-08
    Description: It is now possible to perform whole-genome shotgun sequencing as well as capture of specific genomic regions for extinct organisms. However, targeted resequencing of large parts of nuclear genomes has yet to be demonstrated for ancient DNA. Here we show that hybridization capture on microarrays can successfully recover more than a megabase of target regions from Neandertal DNA even in the presence of approximately 99.8% microbial DNA. Using this approach, we have sequenced approximately 14,000 protein-coding positions inferred to have changed on the human lineage since the last common ancestor shared with chimpanzees. By generating the sequence of one Neandertal and 50 present-day humans at these positions, we have identified 88 amino acid substitutions that have become fixed in humans since our divergence from the Neandertals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burbano, Hernan A -- Hodges, Emily -- Green, Richard E -- Briggs, Adrian W -- Krause, Johannes -- Meyer, Matthias -- Good, Jeffrey M -- Maricic, Tomislav -- Johnson, Philip L F -- Xuan, Zhenyu -- Rooks, Michelle -- Bhattacharjee, Arindam -- Brizuela, Leonardo -- Albert, Frank W -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Lachmann, Michael -- Hannon, Gregory J -- Paabo, Svante -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- P01 CA013106-39/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):723-5. doi: 10.1126/science.1188046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448179" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Fossils ; Genes ; *Genome ; *Genome, Human ; Hominidae/*genetics ; Humans ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis/*methods ; Pan troglodytes/genetics ; Proteins/chemistry/genetics ; Sequence Alignment ; Sequence Analysis, DNA/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-09-06
    Description: The determination of the chimpanzee genome sequence provides a means to study both structural and functional aspects of the evolution of the human genome. Here we compare humans and chimpanzees with respect to differences in expression levels and protein-coding sequences for genes active in brain, heart, liver, kidney, and testis. We find that the patterns of differences in gene expression and gene sequences are markedly similar. In particular, there is a gradation of selective constraints among the tissues so that the brain shows the least differences between the species whereas liver shows the most. Furthermore, expression levels as well as amino acid sequences of genes active in more tissues have diverged less between the species than have genes active in fewer tissues. In general, these patterns are consistent with a model of neutral evolution with negative selection. However, for X-chromosomal genes expressed in testis, patterns suggestive of positive selection on sequence changes as well as expression changes are seen. Furthermore, although genes expressed in the brain have changed less than have genes expressed in other tissues, in agreement with previous work we find that genes active in brain have accumulated more changes on the human than on the chimpanzee lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaitovich, Philipp -- Hellmann, Ines -- Enard, Wolfgang -- Nowick, Katja -- Leinweber, Marcus -- Franz, Henriette -- Weiss, Gunter -- Lachmann, Michael -- Paabo, Svante -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1850-4. Epub 2005 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141373" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; Animals ; Base Sequence ; Child ; Chromosomes, Human, X/genetics ; Chromosomes, Mammalian/genetics ; *Evolution, Molecular ; Female ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; *Genome ; *Genome, Human ; Heart/physiology ; Humans ; Kidney/physiology ; Liver/physiology ; Male ; Middle Aged ; Models, Genetic ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Pan troglodytes/*genetics ; Prefrontal Cortex/physiology ; Promoter Regions, Genetic ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Species Specificity ; Testis/physiology ; *Transcription, Genetic ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-23
    Description: Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498939/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498939/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prufer, Kay -- Munch, Kasper -- Hellmann, Ines -- Akagi, Keiko -- Miller, Jason R -- Walenz, Brian -- Koren, Sergey -- Sutton, Granger -- Kodira, Chinnappa -- Winer, Roger -- Knight, James R -- Mullikin, James C -- Meader, Stephen J -- Ponting, Chris P -- Lunter, Gerton -- Higashino, Saneyuki -- Hobolth, Asger -- Dutheil, Julien -- Karakoc, Emre -- Alkan, Can -- Sajjadian, Saba -- Catacchio, Claudia Rita -- Ventura, Mario -- Marques-Bonet, Tomas -- Eichler, Evan E -- Andre, Claudine -- Atencia, Rebeca -- Mugisha, Lawrence -- Junhold, Jorg -- Patterson, Nick -- Siebauer, Michael -- Good, Jeffrey M -- Fischer, Anne -- Ptak, Susan E -- Lachmann, Michael -- Symer, David E -- Mailund, Thomas -- Schierup, Mikkel H -- Andres, Aida M -- Kelso, Janet -- Paabo, Svante -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 2R01GM077117-04A1/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- R01 GM077117/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Jun 28;486(7404):527-31. doi: 10.1038/nature11128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. pruefer@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication/genetics ; Genetic Variation/*genetics ; Genome/*genetics ; Genome, Human/*genetics ; Genotype ; Humans ; Molecular Sequence Data ; Pan paniscus/*genetics ; Pan troglodytes/*genetics ; Phenotype ; Phylogeny ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-25
    Description: We present the high-quality genome sequence of a approximately 45,000-year-old modern human male from Siberia. This individual derives from a population that lived before-or simultaneously with-the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000-13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 x 10(-9) to 0.6 x 10(-9) per site per year, a Y chromosomal mutation rate of 0.7 x 10(-9) to 0.9 x 10(-9) per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 x 10(-8) to 3.2 x 10(-8) per site per year based on the age of the bone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753769/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753769/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Qiaomei -- Li, Heng -- Moorjani, Priya -- Jay, Flora -- Slepchenko, Sergey M -- Bondarev, Aleksei A -- Johnson, Philip L F -- Aximu-Petri, Ayinuer -- Prufer, Kay -- de Filippo, Cesare -- Meyer, Matthias -- Zwyns, Nicolas -- Salazar-Garcia, Domingo C -- Kuzmin, Yaroslav V -- Keates, Susan G -- Kosintsev, Pavel A -- Razhev, Dmitry I -- Richards, Michael P -- Peristov, Nikolai V -- Lachmann, Michael -- Douka, Katerina -- Higham, Thomas F G -- Slatkin, Montgomery -- Hublin, Jean-Jacques -- Reich, David -- Kelso, Janet -- Viola, T Bence -- Paabo, Svante -- F32 GM115006/GM/NIGMS NIH HHS/ -- GM100233/GM/NIGMS NIH HHS/ -- K99 GM104158/GM/NIGMS NIH HHS/ -- K99-GM104158/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):445-9. doi: 10.1038/nature13810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China [2] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Biological Sciences, Columbia University, New York, New York 10027, USA. ; Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA. ; Institute for Problems of the Development of the North, Siberian Branch of the Russian Academy of Sciences, Tyumen 625026, Russia. ; Expert Criminalistics Center, Omsk Division of the Ministry of Internal Affairs, Omsk 644007, Russia. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Department of Anthropology, University of California, Davis, California 95616, USA. ; 1] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Department of Archaeology, University of Cape Town, Cape Town 7701, South Africa [3] Departament de Prehistoria i Arqueologia, Universitat de Valencia, Valencia 46010, Spain [4] Research Group on Plant Foods in Hominin Dietary Ecology, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. ; Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg 620144, Russia. ; 1] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Laboratory of Archaeology, Department of Anthropology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. ; Siberian Cultural Center, Omsk 644010, Russia. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Santa Fe Institute, Santa Fe, New Mexico 87501, USA. ; Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [2] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25341783" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Chromosomes, Human, Pair 12/genetics ; Diet ; Evolution, Molecular ; *Fossils ; Genome, Human/*genetics ; Humans ; Hybridization, Genetic/genetics ; Male ; Molecular Sequence Data ; Mutation Rate ; Neanderthals/genetics ; Phylogeny ; Population Density ; Population Dynamics ; Principal Component Analysis ; Sequence Analysis, DNA ; Siberia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-20
    Description: We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031459/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031459/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prufer, Kay -- Racimo, Fernando -- Patterson, Nick -- Jay, Flora -- Sankararaman, Sriram -- Sawyer, Susanna -- Heinze, Anja -- Renaud, Gabriel -- Sudmant, Peter H -- de Filippo, Cesare -- Li, Heng -- Mallick, Swapan -- Dannemann, Michael -- Fu, Qiaomei -- Kircher, Martin -- Kuhlwilm, Martin -- Lachmann, Michael -- Meyer, Matthias -- Ongyerth, Matthias -- Siebauer, Michael -- Theunert, Christoph -- Tandon, Arti -- Moorjani, Priya -- Pickrell, Joseph -- Mullikin, James C -- Vohr, Samuel H -- Green, Richard E -- Hellmann, Ines -- Johnson, Philip L F -- Blanche, Helene -- Cann, Howard -- Kitzman, Jacob O -- Shendure, Jay -- Eichler, Evan E -- Lein, Ed S -- Bakken, Trygve E -- Golovanova, Liubov V -- Doronichev, Vladimir B -- Shunkov, Michael V -- Derevianko, Anatoli P -- Viola, Bence -- Slatkin, Montgomery -- Reich, David -- Kelso, Janet -- Paabo, Svante -- 59107334/Howard Hughes Medical Institute/ -- GM100233/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- HG006283/HG/NHGRI NIH HHS/ -- R01 GM040282/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG006283/HG/NHGRI NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 2;505(7481):43-9. doi: 10.1038/nature12886. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany [2] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany [2] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA. ; 1] Max F. Perutz Laboratories, Mathematics and Bioscience Group, Campus Vienna Biocenter 5, Vienna 1030, Austria [2] Ludwig-Maximilians-Universitat Munchen, Martinsried, 82152 Munich, Germany. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Fondation Jean Dausset, Centre d'Etude du Polymorphisme Humain (CEPH), 75010 Paris, France. ; 1] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Seattle, Washington 98195, USA. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; ANO Laboratory of Prehistory 14 Linia 3-11, St. Petersburg 1990 34, Russia. ; Palaeolithic Department, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352235" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Caves ; DNA Copy Number Variations/genetics ; Female ; *Fossils ; Gene Flow/genetics ; Gene Frequency ; Genome/*genetics ; Heterozygote ; Humans ; Inbreeding ; Models, Genetic ; Neanderthals/classification/*genetics ; Phylogeny ; Population Density ; Siberia/ethnology ; Toe Phalanges/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-05
    Description: Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prado-Martinez, Javier -- Sudmant, Peter H -- Kidd, Jeffrey M -- Li, Heng -- Kelley, Joanna L -- Lorente-Galdos, Belen -- Veeramah, Krishna R -- Woerner, August E -- O'Connor, Timothy D -- Santpere, Gabriel -- Cagan, Alexander -- Theunert, Christoph -- Casals, Ferran -- Laayouni, Hafid -- Munch, Kasper -- Hobolth, Asger -- Halager, Anders E -- Malig, Maika -- Hernandez-Rodriguez, Jessica -- Hernando-Herraez, Irene -- Prufer, Kay -- Pybus, Marc -- Johnstone, Laurel -- Lachmann, Michael -- Alkan, Can -- Twigg, Dorina -- Petit, Natalia -- Baker, Carl -- Hormozdiari, Fereydoun -- Fernandez-Callejo, Marcos -- Dabad, Marc -- Wilson, Michael L -- Stevison, Laurie -- Camprubi, Cristina -- Carvalho, Tiago -- Ruiz-Herrera, Aurora -- Vives, Laura -- Mele, Marta -- Abello, Teresa -- Kondova, Ivanela -- Bontrop, Ronald E -- Pusey, Anne -- Lankester, Felix -- Kiyang, John A -- Bergl, Richard A -- Lonsdorf, Elizabeth -- Myers, Simon -- Ventura, Mario -- Gagneux, Pascal -- Comas, David -- Siegismund, Hans -- Blanc, Julie -- Agueda-Calpena, Lidia -- Gut, Marta -- Fulton, Lucinda -- Tishkoff, Sarah A -- Mullikin, James C -- Wilson, Richard K -- Gut, Ivo G -- Gonder, Mary Katherine -- Ryder, Oliver A -- Hahn, Beatrice H -- Navarro, Arcadi -- Akey, Joshua M -- Bertranpetit, Jaume -- Reich, David -- Mailund, Thomas -- Schierup, Mikkel H -- Hvilsom, Christina -- Andres, Aida M -- Wall, Jeffrey D -- Bustamante, Carlos D -- Hammer, Michael F -- Eichler, Evan E -- Marques-Bonet, Tomas -- 090532/Wellcome Trust/United Kingdom -- 260372/European Research Council/International -- DP1 ES022577/ES/NIEHS NIH HHS/ -- DP1ES022577-04/DP/NCCDPHP CDC HHS/ -- GM100233/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- R01 GM095882/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01_HG005226/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 25;499(7459):471-5. doi: 10.1038/nature12228. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823723" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Animals, Wild/genetics ; Animals, Zoo/genetics ; Asia, Southeastern ; Evolution, Molecular ; Gene Flow/genetics ; *Genetic Variation ; Genetics, Population ; Genome/genetics ; Gorilla gorilla/classification/genetics ; Hominidae/classification/*genetics ; Humans ; Inbreeding ; Pan paniscus/classification/genetics ; Pan troglodytes/classification/genetics ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Theoretical Biology 158 (1992), S. 245-268 
    ISSN: 0022-5193
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Annals of operations research 55 (1995), S. 417-437 
    ISSN: 1572-9338
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Economics
    Notes: Abstract This paper presents an approach to integrate OR-expert's knowledge about the modelling of real world problems into a Decision Support System (DSS). First, the problem of modelling is considered and a short survey over the structure of DSS is given. Then a model of different phases of interaction between a DSS and its user is discussed. In the framework of this phase model, different kinds of models are necessary to enable a DSS to perform the support of its user. These models, representing the OR-expert's knowledge, and their various interrelations are discussed. Finally, a prototype computer implementation of this approach is presented and further research topics are figured out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...