ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-23
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
  • 6
    Publication Date: 2018-11-29
    Description: RNA-binding proteins (RBPs) regulate many aspects of transcription and translation in a cell- and tissue-specific manner and are frequently dysregulated in malignancy. We systematically evaluated RBPs preferentially required in acute myeloid leukemia (AML) over other forms of cancer or normal hematopoietic precursors using a CRISPR/Cas9 domain-based, loss-of-function screen targeting 490 classical RBPs with 2,900 sgRNAs (Fig. A). This screen was performed in cells lines representing AML, T-cell acute lymphoblastic leukemia (T-ALL), and lung adenocarcinoma (LUAD) and revealed multiple RBPs preferentially required for AML survival, but not for T-ALL or LUAD survival. We identified genes encoding 21 RBPs that were 〉3-fold depleted in AML cells and significantly overexpressed in AML patient samples versus normal adult CD34+ precursors (p-value 〈 0.05; Fig. B). Amongst RBPs required and upregulated in AML was RBM39, an RBP described to be involved in a number of cellular processes and to interact with key splicing proteins SF3B1 and U2AF2. Genetic ablation of Rbm39 in mouse MLL-AF9 leukemia cells dramatically delayed AML development and progression (Fig. C). In parallel, it has recently been described that a class of clinically-validated anti-cancer sulfonamide compounds (including indisulam and E7820) mediate RBM39 degradation as their dominant cellular mechanism of action. This occurs via novel interactions with the DCAF15 adapter protein of the CUL4/Ddb1 ubiquitin ligase complex with RBM39 as a neo-substrate. Treatment of MOLM-13 cells xenografted into mice with indisulam conferred significant anti-leukemic effects and improved overall survival (Fig. D). To explore the mechanism of RBM39 dependence in AML, we performed proteomic analyses of RBM39 interacting proteins in MOLM-13 cells as well as transcriptome-wide analysis of RBM39 RNA binding by enhanced UV cross-linking and immunoprecipitation (eCLIP) in the same cells. RBM39 physically interacted with an entire network of RBPs identified by our CRISPR screen as crucial for AML cell survival in addition to interacting with the core SF3b splicing complex. Further, anti-RBM39 eCLIP revealed RBM39 binding to exonic regions and most enriched at exon/intron borders at 5' and 3' splice sites of pre-mRNA (Fig. E), suggesting a prominent role of RBM39 in regulating splicing. Consistent with this, RNA-sequencing of AML cells following RBM39 deletion revealed significant effects of RBM39 loss on RNA splicing, most prominently causing increased cassette exon skipping (Fig. F). Recent studies suggest that myeloid leukemias with mutations in RNA splicing factors are sensitized to pharmacologic perturbation of RNA splicing. Analysis of the effects of RBM39 degrading compounds over a panel of 18 AML cells revealed that leukemia cells bearing splicing factor mutations or with high DCAF15 expression were the most sensitive to treatment (Fig. G). Genetic introduction of SF3B1, SRSF2, or U2AF1 hotspot mutations in K562 or NALM6 cells resulted in a 20-50% reduction in IC50 in response to sulfonamides. We next performed RNA sequencing of isogenic K562 cells with or without knockin of SF3B1K700E and SRSF2P95H mutations into the endogenous loci, and treated at the IC50 of E7820 or E7107, a small molecule that inhibits the SF3b core spliceosome complex. Treatment with either drug dramatically increased cassette exon skipping events and intron retention relative to DMSO control, with greater effects in splicing mutant cells. However, at equipotent doses, E7820 markedly increased mis-splicing compared with E7107. Furthermore, E7820 treatment resulted in mis-splicing of a number of RBP targets identified in our CRISPR screen as being required for AML survival, including SUPT6H, hnRNPH, and SRSF10, as well as RBM3 and U2AF2, consistent with previous observations (Fig. H). Here through systematic evaluation of RBPs across several cancers, we identify RBPs specifically required in AML. In so doing we identify a network of functionally and physically interacting RBPs upregulated in AML over normal precursors. Genetic or pharmacologic elimination one such RBP, RBM39, led to aberrant splicing of multiple members of this RBP network as well as of transcriptional regulators required for AML survival. These data suggest important clinical potential for anti-cancer sulfonamide treatment in splicing mutant myeloid leukemias. Disclosures Uehara: Eisai: Employment. Owa:Eisai: Employment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-13
    Description: Mutations in the RNA splicing factor SF3B1 are common in MDS and other myeloid malignancies. SF3B1 mutations promote expression of mRNAs that use an aberrant, intron proximal 3' splice site (ss). Despite the consistency of this finding, linking aberrant splicing changes to disease pathogenesis has been a challenge. Here we identify aberrant splicing and downregulated expression of BRD9, a member of the recently described ATP-dependent non-canonical BAF (ncBAF) chromatin remodeling complex, across SF3B1 mutant leukemias. In so doing, we identify a novel role for altered ncBAF function in hematopoiesis and MDS. To systematically identify functionally important aberrant splicing events created by mutant SF3B1, we integrated differential splicing events in SF3B1 mutant versus wild-type MDS with a positive enrichment CRISPR screen mimicking splicing changes induced by mutant SF3B1 that promote NMD (non-sense mediated mRNA decay). We tested whether loss of any gene functionally inactivated by SF3B1 mutations promoted transformation of Ba/F3 and 32D cells. This identified a specific NMD-inducing aberrant splicing event in BRD9 which promoted cytokine independence (Fig. A) and exhibited striking aberrant splicing across CLL and MDS and across all mutational hotspots in SF3B1 (Fig. B). SF3B1 mutations cause exonization of a normally intronic sequence in BRD9, resulting in inclusion of a poison exon that interrupts BRD9's reading frame (Fig. C) and reduced BRD9 mRNA and protein expression through NMD (Fig. D). We confirmed that mutant SF3B1 suppressed full-length BRD9 levels without generating truncated BRD9 protein. Loss of BRD9 impaired ncBAF complex formation as indicated by abolished interaction between the ncBAF specific component GLTSCR1 and the ATPase subunit BRG1 upon chemical or spliceosomal BRD9 ablation (Fig. D). Given that prior work has linked mutant SF3B1 to use of aberrant 3' ss, we sought to understand the molecular basis for aberrant exon inclusion in BRD9 by mutant SF3B1. Lariat sequencing of SF3B1 mutant versus WT K562 cells and BRD9 minigene analyses identified use of a deep intronic branchpoint adenosine by mutant SF3B1 to promote BRD9 poison exon inclusion (Fig. E). The data above suggest a role for BRD9 downregulation in SF3B1 mutant leukemia. While prior work indicated that BRD9 is required in MLL-rearranged AML (Hohmman et al. Nature Chemical Biology 2016), the role of BRD9 in normal hematopoiesis or other subtypes of myeloid neoplasms has not been evaluated. Genetic downregulation of BRD9 in normal human hematopoietic progenitors from cord blood promoted myelopoiesis while impairing megakaryopoiesis. Interestingly and unexpectedly, BRD9 loss in CD34+ cells promoted terminal erythroid differentiation in vitro. To further evaluate BRD9's role in hematopoiesis in vivo, we also generated mice with inducible knockout of the bromodomain of BRD9 (required for BRD9 function) and generation of a frameshift transcript resulting in reduced Brd9 expression (Fig. F). Loss of Brd9 resulted in macrocytosis with bone marrow erythroid dysplasia in a dosage-dependent manner, along with impaired lymphopoiesis and myeloid skewing. Moreover, competitive transplantation of hematopoietic precursors from these mice revealed that ablation of Brd9 function impaired lymphoid reconstitution while promoting advantage of myeloid cells and hematopoietic precursors (Fig. G-I). In myeloid leukemia cells, introduction of SF3B1K700E or downregulation of BRD9 resulted in increased chromatin accessibility at promoters with a significant overlap in commonly upregulated genes. This finding suggests shared epigenetic effects of SF3B1K700E mutations and BRD9 loss (Fig. J). These data identify aberrant splicing of BRD9 across the spectrum of SF3B1 mutant cancers and identify a novel role for downregulation of ncBAF function in MDS pathogenesis. Consistent with human genetic data, genetic ablation of BRD9 function in mouse and human hematopoietic cells resulted in myeloid skewing and dyserythropoiesis. These data suggest that targeted correction of aberrant BRD9 splicing might serve as a novel therapeutic approach for SF3B1-mutant leukemias. Of note, treatment with drugs impairing the binding of mutant SF3B1 to RNA resulted in a dose-dependent rescue of aberrant BRD9 splicing in vitro (Fig. K) and in treatment of an SF3B1 mutant AML patient-derived xenograft in vivo. Figure Disclosures Kadoch: Foghorn Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-13
    Description: Background: Several studies have indicated that the depth and duration of treatment response in multiple myeloma are both reduced in the relapsed setting. With further lines of therapy, responses continue to weaken in depth and shorten in duration. The National Comprehensive Cancer Network (NCCN) Guidelines suggest that regimens may be repeated in the relapsed setting if there has been a duration of at least 6 months since that regimen was given; however, there is limited information regarding treatment response and duration in the setting of re-treating patients with agents previously utilized. Moreover, preliminary data has suggested that carfilzomib-based regimens in the frontline may be able to attain deeper and longer responses than alternative therapies, which has led to carfilzomib being used more frequently in the frontline. This motivated us to investigate the treatment response, depth, and safety of re-challenging patients with carfilzomib in the relapsed setting. Methods: In this retrospective chart review, we identified all patients who were treated with multiple courses of carfilzomib-based regimens at Memorial Sloan Kettering Cancer Center between January 1, 2014 and November 30, 2018. Our primary objectives were to assess the response, duration of response and treatment, and safety of re-exposure to carfilzomib-based regimens. Responses were assessed as per IMWG 2016 consensus criteria (Lancet Oncol 2016). In this review we describe the clinical course, safety, and efficacy of re-challenging patients with carfilzomib in the relapsed and refractory settings. Results: Fifteen patients were identified as having received multiple, independent lines of carfilzomib-based therapy. The median age of the cohort was 58 years (49-76) with 53% male (8); two patients had R-ISS stage 1, eight stage 2, and five stage 3 disease. Five of these patients received their initial carfilzomib in the frontline as part of KRD; four of whom attained a sCR with the fifth attaining a VGPR. The remaining ten patients received their initial carfilzomib in the second-line (4) or 3rd and subsequent lines (6). Upon re-exposure to carfilzomib, patients were heavily treated with a median of four lines of therapy (2-15). All but three patients had at least one adverse cytogenetic abnormality; eight with 17p-, five with 13q-, three with t4;14, and six with 1q+. Regimens utilized in the relapsed setting included KRD (N=4), KPD (N=3), Cyklone (N=2), KD + HDAC inhibitor (N=3), KD (N=1), KCD (N=1), and KRD + daratumumab (N=1). Four patients received carfilzomib at a dose of 27 mg/m2 while the remaining 10 received 〉 36 mg/m2. Responses were seen in all but four patients (two VGPR, five PR, and four MR), with one patient experiencing progression during carfilzomib with no response; notably, this patient only attained a MR to primary carfilzomib therapy and their second exposure was the 15th line of therapy. The median time to next therapy was 4.8 months (1.9-19.4) with one patient being bridged to autologous hematopoietic cell transplantation (HCT), one to allogeneic HCT, and three are currently receiving ongoing carfilzomib treatment (13.9, 2.8, 2.5 months with VGPR, MR, and PR, respectively). Exacerbation of baseline hypertension was identified in three patients, but these instances were treated successfully with standard medications with no further complications. No additional cardiovascular events were identified in the frontline or re-treatment settings. Conclusions: We report that in a heavily pre-treated, high risk patient cohort, patients previously treated with carfilzomib-based regimens may be safely re-challenged with carfilzomib. Importantly, none of these patients experienced cardiovascular adverse effects other than exacerbation of underlying hypertension, further supporting the ability to safely re-treat a select group of patients with carfilzomib. We conclude that depending on the patient and treatment history, re-challenging with carfilzomib at relapse may be appropriate salvage therapy, particularly as a bridge towards HCT and/or clinical trials. Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Lesokhin:Genentech: Research Funding; Serametrix Inc.: Patents & Royalties; Janssen: Research Funding; GenMab: Consultancy, Honoraria; BMS: Consultancy, Honoraria, Research Funding; Juno: Consultancy, Honoraria; Takeda: Consultancy, Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landau:Prothena: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Caelum: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy, Honoraria. Shah:Janssen Pharmaceutica: Research Funding; Amgen: Research Funding. Scordo:Angiocrine Bioscience, Inc.: Consultancy; McKinsey & Company: Consultancy. Giralt:Amgen: Consultancy, Research Funding; Spectrum Pharmaceuticals: Consultancy; Miltenyi: Research Funding; Jazz Pharmaceuticals: Consultancy; Actinium: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Novartis: Consultancy; Johnson & Johnson: Consultancy, Research Funding; Kite: Consultancy. Landgren:Karyopharm: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Theradex: Other: IDMC; Merck: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-05
    Description: Key Points KMT2C mutations occur in 15% and 25% of patients with cHCL and vHCL, respectively, along with CCND3 and U2AF1 mutations each in 13% of vHCLs. NF1, NF2, N/KRAS, and IRS1 alterations contribute to clinical resistance to vemurafenib treatment in patients with cHCL.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-16
    Description: Neo-vascularization has been implicated in a number of inflammatory diseases as well as tumor growth. Both angiogenesis, the sprouting of resident tissue endothelial cells (ECs), and vasculogenesis, the recruitment of bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs), are thought to participate in neo-vascularization. EPCs have been implicated in tumor growth, however, the biologic significance of EPCs during inflammation is unclear. We studied neo-vascularization and the role of EPCs during inflammation in well-characterized murine models of graft-versus-host disease (GVHD). We found a significantly increased number of donor BM-derived EPCs in peripheral blood and BM in allogeneic bone marrow transplantation (allo-BMT) recipients with GVHD at different time points after BMT. We next quantified neo-vascularization during inflammation in GVHD target organs by immunofluorescence microscopy and by flow cytometry. We found significantly increased numbers of donor-derived ECs in the liver as well as a significantly higher vessel density in the liver, illeum and colon. We adoptively transferred selected GFP+ EPCs and observed incorporation into the neo-vasculature of the inflamed intestines (Fig. 1A) and liver during GVHD. Taken together, these data suggest that neovascularization during GVHD is due to vasculogenesis from donor EPCs. Next we used an antibody (E4G10) against the vascular endothelial adhesion molecule VE-cadherin, which recognizes a terminal epitope that is exposed on circulating EPCs, but is masked in the established vasculature, and found a significant reduction of EPCs in the peripheral blood and BM. We observed that depletion of EPCs was associated with a significant inhibition of donor BM-derived neo-vascularization in the liver, illeum and colon during GVHD. E4G10 treated recipients had significantly better survival and lower clinical GVHD scores in all tested models (B6BALB/c [1×106 T], B6B6D2F1 [1×106 T], B6B6D2F1 [2×106 T], B6B6D2F1 [3×106 T]). We found significantly reduced numbers of allo-reactive donor T cells in secondary lymphoid organs during GVHD, but no changes in the expression of activation markers and homing molecules, as a consequence of E4G10 administration. In blinded histopathological analyses we found significantly less GVHD and reduced numbers of tissue-infiltrating CD3+ T cells in the liver, illeum and colon in E4G10-treated allo-BMT recipients. To better emulate the clinical setting, we first assessed the role of EPCs in tumor growth in allo-BMT recipients. We transferred sorted GFP+ EPCs as well as renal carcinoma (RENCA) cells to BALB/c recipients and found that GFP+ EPCs were recruited to the neo-vasculature of lung metastases. We detected a significant inhibitory effect of E4G10 administration on tumor growth, as determined by in vivo bioluminescence imaging, in both tumors tested (RENCA, A20 lymphoma) as well as a significant survival prolongation in tumor-bearing mice that were treated with E4G10 in the RENCA and C1498 (AML) model. Finally, we performed experiments in which tumor-bearing allo-BMT recipients received allogeneic T cells, which mediate the favorable graft-versus-tumor (GVT) effect but also cause inflammation in GVHD target organs. We found that administration of E4G10 led to a significantly higher rate of tumor-free survival in all models (B6'BALB/c [1×105 B6 T and 2×105 RENCA], B10BR'B6 [1×105 B10BR T and 2×105 C1498], B6'BALB/c [2×105 B6 T and 5×105 A20]), which was due to both attenuation of GVHD as well as inhibition of tumor growth (Fig. 1B). We conclude that depletion of EPCs is a strategy to simultaneously ameliorate inflammatory disease and tumors, providing a new approach to improve therapeutic outcome of allogeneic hematopoietic stem cell transplantation. This study demonstrates the biological significance of EPCs for neo-vascularization during inflammation and identifies the specific targeting of EPCs to disrupt neo-vascularization as a novel therapeutic concept to decrease inflammation. Fig. 1. (A) EPCs are incorporated in neo-vasculature during GVHD. Sorted B6 GFP+EPCs (20,000), B6 GFP-BM and GFP-T cells were transferred at the day of BMT. GFP+EPC derived GFP+ECs are surrounding the luminal (L) space in neo-vasculature of the inflamed colon at day +14 after allo-BMT. (B) Depletion of EPCs leads to improved survival of tumor bearing allo-BMT recipients with GVHD due to simultaneous beneficial effects on inflammation and tumor growth. Lethally irradiated recipients were transplanted with 5×106 donor BM cells, 2.5×105 donor T cells, challenged intravenously with A20 lymphoma at day 0 and treated with 1 mg E4G10 or control antibody i.p. at days 0,2,4,6,8 and 10 after allo-BMT, combined data of 3 experiments are showm, n=28–33 per group. Fig. 1. (A) EPCs are incorporated in neo-vasculature during GVHD. Sorted B6 GFP+EPCs (20,000), B6 GFP-BM and GFP-T cells were transferred at the day of BMT. GFP+EPC derived GFP+ECs are surrounding the luminal (L) space in neo-vasculature of the inflamed colon at day +14 after allo-BMT. (B) Depletion of EPCs leads to improved survival of tumor bearing allo-BMT recipients with GVHD due to simultaneous beneficial effects on inflammation and tumor growth. Lethally irradiated recipients were transplanted with 5×106 donor BM cells, 2.5×105 donor T cells, challenged intravenously with A20 lymphoma at day 0 and treated with 1 mg E4G10 or control antibody i.p. at days 0,2,4,6,8 and 10 after allo-BMT, combined data of 3 experiments are showm, n=28–33 per group.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...