ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 330-332 (Feb. 2007), p. 1239-1242 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Wear is the primary cause of failure of joint replacement prostheses.Poly(ether-ether-ketone)(PEEK) was reinforced with nano-Al2O3 particals of various mass fractionsin this study. The effect of nanometer Al2O3 mass fractions on the contacted angle of the reinforcedPEEK composites was investigated. Tribological properties of composites under distilled water andphysiological saline lubrication condition was measured. And the morphologies of the worn surfaceswere observed with optical microscope. The results shows that the wettability and wear resistancewere all improved with appropriate nano-Al2O3.The wear resistance of composites filled with 7%nano-Al2O3 was the best under both distilled water and physiological saline lubrication. In addition, itcan be found that there is serious plough on the surface of pure PEEK. This indicated that seriousfatigue wear occurred on the worn surface of pure PEEK. Moreover, there are only light fatigue wearon the worn surfaces of PEEK composites filled with nano-Al2O3
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 73 (1967), S. 201-220 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The salt gland in Tamarix is a complex of eight cells composed of two inner, vacuolate, collecting cells and six outer, densely cytoplasmic, secretory cells. The secretory cells are completely enclosed by a cuticular layer except along part of the walls between the collecting cells and the inner secretory cell. This non-cuticularized wall region is termed the transfusion are (Ruhland, 1915) and numerous plasmodesmata connect the inner secretory cells with the collecting cells in this area. Plasmodesmata also connect the collecting cells with the adjacent mesophyll cells. There are numerous mitochondria in the secretory cells and in different glands they show wide variation in form. In some glands wall protuberances extend into the secretory cells forming a labyrinth-like structure; however, in other glands the protuberances are not extensively developed. Numerous small vacuoles are found in some glands and these generally are distributed around the periphery of the secretory cells in association with the wall protuberances. Further, an unusual structure or interfacial apparatus is located along the anticlinal walls of the inner secretory cells. The general structure of the gland including the cuticular encasement, connecting plasmodesmata, interfacial apparatus, and variations in mitochondria, vacuoles, and wall structures are discussed in relation to general glandular function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 1096–1115, doi:10.1175/2011JCLI4228.1.
    Description: Ventilation, including subduction and obduction, for the global oceans was examined using Simple Ocean Data Assimilation (SODA) outputs. The global subduction rate averaged over the period from 1959 to 2006 is estimated at 505.8 Sv (1 Sv ≡ 106 m3 s−1), while the corresponding global obduction rate is estimated at 482.1 Sv. The annual subduction/obduction rates vary greatly on the interannual and decadal time scales. The global subduction rate is estimated to have increased 7.6% over the past 50 years, while the obduction rate is estimated to have increased 9.8%. Such trends may be insignificant because errors associated with the data generated by ocean data assimilation could be as large as 10%. However, a major physical mechanism that induced these trends is primarily linked to changes in the Southern Ocean. While the Southern Ocean plays a key role in global subduction and obduction rates and their variability, both the Southern Ocean and equatorial regions are critically important sites of water mass formation/erosion.
    Description: This work was supported by the Key State Basic Research Program of China under Grant 2012CB417401, the National Natural Science Foundation of China (Grants 40906007, 40890152), and the Open Foundation of Physical Oceanography Laboratory, OUC, under Grant 200902.
    Description: 2012-08-15
    Keywords: Decadal variability ; Southern Ocean ; Trends ; Water masses ; Convergence ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1253-1266, doi:10.1175/2007JPO3786.1.
    Description: Wind stress and tidal dissipation are the most important sources of mechanical energy for maintaining the oceanic general circulation. The contribution of mechanical energy due to tropical cyclones can be a vitally important factor in regulating the oceanic general circulation and its variability. However, previous estimates of wind stress energy input were based on low-resolution wind stress data in which strong nonlinear events, such as tropical cyclones, were smoothed out. Using a hurricane–ocean coupled model constructed from an axisymmetric hurricane model and a three-layer ocean model, the rate of energy input to the world’s oceans induced by tropical cyclones over the period from 1984 to 2003 was estimated. The energy input is estimated as follows: 1.62 TW to the surface waves and 0.10 TW to the surface currents (including 0.03 TW to the near-inertial motions). The rate of gravitational potential energy increase due to tropical cyclones is 0.05 TW. Both the energy input from tropical cyclones and the increase of gravitational potential energy of the ocean show strong interannual and decadal variability with an increasing rate of 16% over the past 20 years. The annual mean diapycnal upwelling induced by tropical cyclones over the past 20 years is estimated as 39 Sv (Sv ≡ 106 m3 s−1). Owing to tropical cyclones, diapycnal mixing in the upper ocean (below the mixed layer) is greatly enhanced. Within the regimes of strong activity of tropical cyclones, the increase of diapycnal diffusivity is on the order of (1 − 6) × 10−4 m2 s−1. The tropical cyclone–related energy input and diapycnal mixing may play an important role in climate variability, ecology, fishery, and environments.
    Description: LLL and WW were supported by the National Basic Research Priorities Programmer of China through Grant 2007CB816004 and National Outstanding Youth Natural Science Foundation of China FIG. 15. Annual-mean vertical diffusivity induced by tropical cyclones from 1984 to 2003 (units: 10 4 m2 s 1): (right) the horizontal distribution and (left) the zonally averaged vertical diffusivity. JUNE 2008 L IU ET AL . 1265 under Grant 40725017. RXH was supported by the W. Alan Clark Chair from Woods Hole Oceanographic Institution.
    Keywords: Tropical cyclones ; Ocean circulation ; Wind stress ; Mixing ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Oceanography 67 (2011): 273-279, doi:10.1007/s10872-011-0025-4.
    Description: The annual subduction/obduction rate can be calculated in Lagrangian and Eulerian coordinates. In previous studies such calculations were primarily focused on the case with the seasonal cycle only. By extending these calculations to the case including the diurnal cycle of mixed layer depth, the annual subduction/obduction rate can be greatly increased.
    Description: LLL and FW were supported by National Natural Science Foundation of China under Grant 40906007 and 40890150.
    Keywords: Diurnal cycle ; Subduction ; Obduction
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 53 (2006): 31-41, doi:10.1016/j.dsr2.2005.11.001.
    Description: Wind stress energy input to the oceans is the most important source of mechanical energy in maintaining the oceanic general circulation. Previous studies indicate that wind energy input to the Ekman layer and surface waves varied greatly over the past 50 years. In this study wind energy input to surface current and surface geostrophic current was calculated as the scalar product of wind stress and surface current and surface geostrophic current. The surface geostrophic current was calculated in two ways: the surface geostrophic velocity diagnosed from the TOPEX/POSEIDON altimeter data over period (1993 to 2003) or calculated from the sea surface height of the numerical model. The surface velocity was obtained from a numerical model. Estimate of wind energy input based on altimetric data averaged over the period from 1993 to 2003 is 0.84TW (1TW=1012 W), excluding the equatorial band (within ±3° of the equator). Estimate of the wind energy input to the surface geostrophic current based on the numerical model is 0.87TW averaged from 1993 to 2003, and wind energy input to the surface current for the same period is 1.16TW. This input is primarily concentrated over the Southern Ocean and the equatorial region (20°S - 20°N). This energy varied greatly on interannual and decadal time scales, and it increased 12% over the past 25 years and the interannual variability mainly occurs in the latitude band of 40°S - 60°S and the equatorial region.
    Description: RXH was supported by the National Oceanic and Atmospheric Administration through CICOR Cooperative Agreement NA17RJ1223 and the National Aero-Space Administration through Contract No. 1229833 (NRA-00-OES-05). WW and LLL were supported by the National Nature Science Foundation of China through grant 40476010 and Research Fund for the Doctoral Program of Higher Education through grant 20030423011.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 580531 bytes
    Format: 79493 bytes
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 58 (2011): 658-667, doi:10.1016/j.dsr.2011.04.003.
    Description: Ventilation, including subduction and obduction, in the North Pacific is re-examined, based on SODA outputs and the Eulerian definition. The annual subduction rate averaged from 2001 to 2004 is estimated at 49.8Sv; while the annual obduction rate is 26.7Sv. Furthermore, the annual subduction/obduction rate enhancement induced by tropical cyclones in the North Pacific, defined as the difference between the annual subduction/obduction rate for the cases including the mixed layer depth perturbations induced by tropical cyclones and that for the cases without the perturbations, is estimated. Based on SODA outputs and the mixed layer deepening obtained from a hurricane-ocean coupled model, the annual tropical cyclone-induced subduction rate enhancement averaged from 2001 to 2004 is estimated at 4.4Sv and the obduction rate enhancement 5.2Sv; and such enhancement is mainly concentrated in the latitudinal band from 10°N to 30°N.
    Description: This study is supported by National Natural Science Foundation of China under Grant 40906007 and 40890150.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-28
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1967-01-01
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...