ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gregg, Patricia M; Le Mével, H; Zhan, Yan; Dufek, Josef; Geist, Dennis; Chadwick, William W Jr (2018): Stress Triggering of the 2005 Eruption of Sierra Negra Volcano, Galápagos. Geophysical Research Letters, 45(24), 13,288-13,297, https://doi.org/10.1029/2018GL080393
    Publication Date: 2023-01-13
    Description: The following files are model data generated by COMSOL Multiphysics 5.3. Our numerical approach utilizes previously developed and benchmarked, thermomechanical and fluid-structure interaction FEM models. COMSOL Multiphysics 5.3a calculates the stress, strain, and temperature variations due to a viscous magma flowing from a deeper source into an existing, magma-filled reservoir. Model rheology implantations include: non-Temperature-dependent, Temperature-dependent, and Temperature-dependent with pre-existing weakness. Model outputs includes: Time, vertical deformation, optimized flux, change in overpressure, maximum tensile stress, and temperature.
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-28
    Description: Large rhyolitic volcanoes pose a hazard, yet the processes and signals foretelling an eruption are obscure. Satellite geodesy has revealed surface inflation signaling unrest within magma reservoirs underlying a few rhyolitic volcanoes. Although seismic, electrical, and potential field methods may illuminate the current configuration and state of these reservoirs, they cannot fully address the processes by which they grow and evolve on geologic time scales. We combine measurement of a deformed paleoshore surface, isotopic dating of volcanism and surface exposure, and modeling to determine the rate of growth of a rhyolite-producing magma reservoir. The numerical approach builds on a magma intrusion model developed to explain the current, decade-long, surface inflation at 〉20 cm/year. Assuming that the observed 62-m uplift reflects several non-eruptive intrusions of magma, each similar to the unrest over the past decade, we find that ~13 km 3 of magma recharged the reservoir at a depth of ~7 km during the Holocene, accompanied by the eruption of ~9 km 3 of rhyolite. The long-term rate of magma input is consistent with reservoir freezing and pluton formation. Yet, the unique set of observations considered here implies that large reservoirs can be incubated and grow at shallow depth via episodic high-flux magma injections. These replenishment episodes likely drive rapid inflation, destabilize cooling systems, propel rhyolitic eruptions, and thus should be carefully monitored.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-09
    Description: The Laguna del Maule (LdM) volcanic field in Chile is an exceptional example of postglacial rhyolitic volcanism in the Southern Volcanic Zone of the Andes. By interferometric analysis of synthetic aperture radar (SAR) images acquired between 2007 and 2012, we measure exceptionally rapid deformation. The maximum vertical velocity exceeds 280 mm yr –1 . Although the rate of deformation was negligible from 2003 January to 2004 February, it accelerated some time before 2007 January. Statistical testing rejects, with 95 per cent confidence, four hypotheses of artefacts caused by tropospheric gradients, ionospheric effects, orbital errors or topographic relief, respectively. The high rate of deformation is confirmed by daily estimates of position during several months in 2012, as measured by analysis of signals transmitted by the Global Positioning System (GPS) and received on the ground at three stations around the reservoir forming the LdM. The fastest-moving GPS station (MAU2) has a velocity vector of [–180 ± 4, 46 ± 2, 280 ± 4] mm yr –1 for the northward, eastward and upward components, respectively, with respect to the stable interior of the South America Plate. The observed deformation cannot be explained by changes in the gravitational load caused by variations in the water level in the reservoir. For the most recent observation time interval, spanning 44 d in early 2012, the model that best fits the InSAR observations involves an inflating sill at a depth of 5.2 ± 0.3 km, with length 9.0 ± 0.3 km, width 5.3 ± 0.4 km, dip 20 ± 3° from horizontal and strike 14 ± 5° clockwise from north, assuming a rectangular dislocation in a half-space with uniform elastic properties. During this time interval, the estimated rate of tensile opening is 1.1 ± 0.04 m yr –1 , such that the rate of volume increase in the modelled sill is 51 ± 5 million m 3 yr –1 or 1.6 ± 0.2 m 3  s –1 . From 2004 January to 2012 April the total increase in volume was at least 0.15 km 3 over the 5.2-yr interval observed by InSAR. The inflating region includes most of the 16-km-by-14-km ring of rhyolitic domes and coulees. The similarity of high-silica rhyolite compositions on opposite sides of the ring and the concentration of rhyolitic eruptions since ~20 ka suggest that processes within a large silicic magma chamber are responsible for the current deformation.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-27
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-01
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-04
    Description: Time-dependent, or 4-D, microgravity changes observed at the Laguna del Maule volcanic field, Chile, since 2013, indicate significant (1.5 × 10^11 kg) ongoing mass injection. Mass injection is focused along the Troncoso fault, and subparallel structures beneath the lake at 1.5–2 km depth, and is best modeled by a vertical rectangular prism source. The low-density change (156 to 307 kg/m3) and limited depth extent suggest a mechanism of hydrothermal fluid intrusion into existing voids, or voids created by the substantial uplift, rather than deeper-sourced dike intrusion of rhyolite or basalt magma. Although the gravity changes are broadly spatially coincident with ongoing surface deformation, existing models that explain the deformation are deeper sourced and cannot explain the gravity changes. To account for this discrepancy and the correspondence in time of the deformation and gravity changes, we explore a coupled magmatectonic interaction mechanism that allows for shallow mass addition, facilitated by deeper magma injection. Computing the strain, and mean, normal, and Coulomb stress changes on northeast trending faults, caused by the opening of a sill at 5 km depth, shows an increase in strain and mean and normal stresses along these faults, coincident with the areas of mass addition. Seismic swarms in mid-2012 to the west and southwest of the mass intrusion area may be responsible for dynamically increasing permeability on the Troncoso fault, promoting influx of hydrothermal fluids, which in turn causes larger gravity changes in the 2013 to 2014 interval, compared to the subsequent intervals.
    Description: Published
    Description: 3179–3196
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-27
    Description: Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1-3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed-rather than preceded-by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface.
    Description: Published
    Description: 83–88
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-11
    Description: Volcano geodesy typically requires the synthesis of ground deformation models with observational data. A wide variety of volcano deformation models have been developed, from simple point source models to sophisticated numerical approaches that attempt to account for realistic topographies, complex source geometries and heterogeneous geologic structure. A wide variety of inverse methods are also combined with these models to characterize the volcanic sources from the observed data. However, to date there has been no comprehensive attempt to intercompare volcano deformation models and inversion results, or to establish baseline standards of reproducibility. The Drivers of Volcano Deformation (DVD) exercises provide a community-driven framework to accomplish these goals with a series of exercises for verification - quantitative comparison of forward model outputs, and validation - comparison of inversion results from synthetic data. The forward model exercises begin with a spherical reservoir in a homogeneous half-space, for which an exact solution exists, then introduce topography, more complex source geometries, and heterogeneous elastic properties. The inversion exercises provide synthetic GNSS and InSAR datasets for spherical reservoirs in elastic half-spaces with varying noise, and assess the consistency and uniqueness with which reservoir location, volume change, radius and pressurization can be inverted. The forward models comparison resulted in multiple bugs being fixed in commonly used solutions. The variability of inversion results emphasizes the importance of model choice, inverse methods, and uncertainty quantification. The Drivers of Volcano Deformation exercises are planned to evolve with additional phases that will test more complex forward models and inverse problems.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...