ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-20
    Description: The objective of the Heatshield for Extreme Entry Environment Technology (HEEET) projects is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. Destinations that have extreme entry environments with heat fluxes up to 5000 watts per square centimeter and pressures up to 5 atmospheres, entry environments that NASA has not flown since Pioneer-Venus and Galileo. The scope of the project is broad and can be split into roughly four areas, Manufacturing/Integration, Structural Testing and Analysis, Thermal Testing and Analysis and Documentation. Manufactruing/Integration covers from raw materials, piece part fabrication to final integration on a 1-meter base diameter 45-degree sphere cone Engineering Test Unit (ETU). A key aspect of the project was to transfer as much of the manufacturing technology to industry in preparation to support future mission infusion. The forming, infusion and machining approaches were transferred to Fiber Materials Inc. and FMI then fabricated the piece parts from which the ETU was manufactured. The base 3D-woven material consists of a dual layer weave with a high density outer layer to manage recession in the system and a lower density, lower thermal conductivity inner layer to manage the heat load. At the start of the project it was understood that due to weaving limitations the heat shield was going to be manufactured from a series of tiles. And it was recognized that the development of a seam solution that met the structural and thermal requirements of the system was going to be the most challenging aspect of the project. It was also recognized that the seam design would drive the final integration approach and therefore the integration of the ETU was kept in-house within NASA. A final seam concept has been successfully developed and implemented on the ETU and will be discussed. The structural testing and analysis covers from characterization of the different layers of the infused material as functions of weave direction and temperature, to sub-component level testing such as 4-pt bend testing at sub-ambient and elevated temperature. ETU test results are used to validate the structural models developed using the element and sub-component level tests. Given the seam has to perform both structurally and aerothermally during entry a novel 4-pt bend test fixture was developed allowing articles to be tested while the front surface is heated with a laser. These tests are intended to establish the system's structural capability during entry. A broad range of aerothermal tests (arcjet tests) are being performed to develop material response models for predicting the required TPS thickness to meet a mission's needs and to evaluate failure modes. These tests establish the capability of the system and assure robustness of the system during entry. The final aspect of the project is to develop a comprehensive Design and Data Book such that a future mission will have the information necessary to adopt the technology. This presentation will provide an overview and status of the project and describe the status of the tehnology maturation level for the inner and outer planet as well as earth entry sample return missions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN57451 , Annual International Planetary Probe Workshop (IPPW 2018); Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.
    Keywords: Space Transportation and Safety; Spacecraft Design, Testing and Performance
    Type: NF1676L-26554 , AIAA SPACE 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-09
    Description: Starting in 2013 and completing in 2019, the Heatshield for Extreme Entry Environment Technology (HEEET) project has been working to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations with extreme entry environments such as Venus, Saturn, Uranus, Neptune and high-speed sample return missions to Earth. A key aspect of the project has been the building and testing of a 1-meter base diameter Engineering Test Unit (ETU) representative of what could be used for a Saturn probe. This paper provides a high-level overview of the HEEET project including manufacturing and testing of the ETU for structural model verification, establish system capability and verify manufacturing workmanship.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN69963 , Materials Science and Technology 2019 (MS&T19); Sep 29, 2019 - Oct 03, 2019; Portland, Oregon; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.
    Keywords: Spacecraft Design, Testing and Performance; Composite Materials; Fluid Mechanics and Thermodynamics
    Type: NF1676L-23840 , Space 2016; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Vehicle size and weight are driving cost factors in sending vehicles into space because the cost of launch is directly related to the payload mass being delivered. Vehicle size and weight have a larger impact on deep- space missions compared to sending a payload to low Earth orbit due to the extra fuel and supplies required to complete the longer duration mission. One area of study for possible vehicle volume or weight reduction is the thermal protection system (TPS) of a vehicle. Hot structures have been proposed as a TPS concept which can carry both primary structural loads and thermal loads. The use of hot structures on a Mars entry vehicle may be feasible and have potential volume and weight savings over the current state of the art ablative TPS technology. A preliminary trade study was performed on a mid lift-to-drag aeroshell Mars entry concept vehicle; comparing the weight and skin thickness of a vehicle using ablative TPS with a vehicle using hot structures. Independent thermal and structural analyses were performed to determine the minimum mass designs. The goal of this study was to determine if the use of hot structures was feasible and had potential for significant vehicle volume and weight savings over the current state of the art. This trade study found that use of a hot structures leads to a feasible alternative to ablative TPS technology, with potential 53% weight and 22% thickness (volume) saving benefits that could enable future missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2018-219819 , L-20917 , NF1676L-29731
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...