ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-18
    Description: Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Velasquez, Silvia M -- Ricardi, Martiniano M -- Dorosz, Javier Gloazzo -- Fernandez, Paula V -- Nadra, Alejandro D -- Pol-Fachin, Laercio -- Egelund, Jack -- Gille, Sascha -- Harholt, Jesper -- Ciancia, Marina -- Verli, Hugo -- Pauly, Markus -- Bacic, Antony -- Olsen, Carl Erik -- Ulvskov, Peter -- Petersen, Bent Larsen -- Somerville, Chris -- Iusem, Norberto D -- Estevez, Jose M -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1401-3. doi: 10.1126/science.1206657.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Fisiologia, Biologia Molecular y Neurociencias-Consejo Nacional de Investigaciones Cientificas y Tecnicas (IFIByNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680836" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Arabinose/metabolism ; Carbohydrate Conformation ; Cell Wall/*metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Glycosyltransferases/genetics/metabolism ; Hydroxylation ; Hydroxyproline/*metabolism ; Models, Biological ; Mutation ; Pentosyltransferases/chemistry/metabolism ; Phenotype ; Plant Proteins/chemistry/*metabolism ; Plant Roots/cytology/*growth & development/metabolism ; Polysaccharides/chemistry ; Procollagen-Proline Dioxygenase/genetics/*metabolism ; Proline/metabolism ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-26
    Description: Art v 1 is the major allergen of mugwort ( Artemisia vulgaris ) pollen. It is formed by an N-terminal globular defensin-like part and a C-terminal proline-rich domain. As the structure and the dynamics of Art v 1 have been mostly described for its recombinant, non-glycosylated form, which does not occur in normal plant physiology, the present work intends to obtain a three-dimensional model for Art v 1 native O-glycosylation structure and to evaluate the influence of such glycans over the protein dynamics and allergenicity through molecular dynamics simulations in triplicates. Structural insights into the mutual recognition of Art v 1 protein and carbohydrate moieties recognition by antibodies were obtained, in which glycan chains remained close to the previously identified epitopes in the defensin-like domain, thus pointing to potential interferences with antibodies recognition. To our knowledge, this is the first structural report of an entire furanose-containing glycoprotein. As well, together with the previously determined NMR structures, the obtained results contribute in the comprehension of the effect of glycosylation over both proline-rich and defensin-like domains, providing an atomic representation of such alterations.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-07
    Description: fIIa and fXa are two of the main targets of antithrombin, a serine proteases inhibitor that plays a major role in the regulation of blood clotting. The formation of ternary complexes between such molecules and glycosaminoglycans, as heparin, is the main path for inhibiting those enzymes, which may occur through two distinct mechanisms of action. While these serine proteases present distinct susceptibilities to these paths, in which fIIa demands an interaction with heparin, neither the molecular basis of this differential inhibition nor the role of fIIa glycosylation on this process is fully understood. Thus, the present work evaluated through molecular dynamics simulations the effects of glycosylation on fIIa and the consequences of heparin binding to both proteases function and dynamics. Based on the obtained data, fIIa N-linked glycan promoted an increase in the active site pocket size by stabilizing regions that encircle it, while heparin binding was observed to reverse such an effect. Additionally, heparin orientation observed on the surface of fIIa, but not fXa, allows a linear long-chain heparin binding to antithrombin in ternary complexes. Finally, the enzymes catalytic triad organization was disrupted due to a strong glycosaminoglycan binding to the proteases exosite 2. Such data support an atomic-level explanation for the higher inhibition constant of the antithrombin–heparin complex over fIIa than fXa, as well as for the different susceptibilities of those enzymes for antithrombin mechanisms of action.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-16
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...